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ABSTRACT:
Hermite-scan (H-scan) imaging is a tissue characterization technique based on the analysis of raw ultrasound radio

frequency (RF) echoes. It matches the RF echoes to Gaussian-weighted Hermite polynomials of various orders to

extract information related to scatterer diameter. It provides a color map of large and small scatterers in the red and

blue H-scan image channels, respectively. H-scan has been previously reported for characterizing breast, pancreatic,

and thyroid tumors. The present work evaluated H-scan imaging to differentiate glioblastoma tumors from normal

brain tissue ex vivo. First, we conducted 2-D numerical simulations using the k-wave toolbox to assess the perfor-

mance of parameters derived from H-scan images of acoustic scatterers (15–150 lm diameters) and concentrations

(0.2%–1% w/v). We found that the parameter intensity-weighted percentage of red (IWPR) was sensitive to changes

in scatterer diameters independent of concentration. Next, we assessed the feasibility of using the IWPR parameter

for differentiating glioblastoma and normal brain tissues (n¼ 11 samples per group). The IWPR parameter estimates

for normal tissue (44.1% 6 1.4%) were significantly different (p< 0.0001) from those for glioblastoma

(36.2% 6 0.65%). These findings advance the development of H-scan imaging for potential use in differentiating

glioblastoma tumors from normal brain tissue during resection surgery. VC 2023 Acoustical Society of America.
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I. INTRODUCTION

Standard imaging techniques, such as magnetic resonance

imaging (MRI) and computed tomography (CT) scans, are inef-

fective for accurately assessing glioblastoma tumor margins

during surgery. The reasons include safety issues of CT, repeat-

ability with MRI, and accuracy of image fusion due to brain

shift.1,2 Currently, there is a lack of cost-effective intra-opera-

tive imaging tools that can accurately identify tumor margins.

Fluorescence imaging, intraoperative MRI, and conventional

brightness-mode (B-mode) ultrasound have been utilized for

this purpose, but they have limitations. Fluorescence imaging

has low sensitivity for detecting tumor margins, and intraopera-

tive MRI is expensive and not widely available.1

Hermite-scan (H-scan) is a tissue classification method in

which raw radio frequency (RF) backscattered signals are

matched to various orders of Gaussian-weighted Hermite poly-

nomials that can represent scatterer diameter.3,4 H-scan imaging

generates color-coded images; wherein large scatterers are rep-

resented in the red channel and small scatterers are mapped in

the blue channel. Tissues can exhibit packing fraction and cell

size variations due to inflammation, edema, and pathological

processes. Detecting changes in size, concentration, and result-

ing scattering properties has long been a goal in medical ultra-

sound.5,6 Unlike tissue characterization techniques, such as

backscatter coefficient imaging, spectral feature extraction, and

envelope statistical analyses,7–10 H-scan does not require cali-

bration of the transducer probe and imaging system. Although

H-scan predominantly concentrates on capturing the relative

dimensions of acoustic scatterers, taking a qualitative approach,

H-scan provides images with higher spatial resolution than

those of the kernel-based methods for characterizing tissues.

H-scan imaging has been reported to differentiate nor-

mal and cancerous tissue, and assess cancer progression and

treatment response.11–19 It has been successful in identifying

normal, benign, and malignant thyroid and breast tumors

in vivo,14–16,20,21 and distinguishing different types of
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melanomas in a small animal model.22 Glioblastoma (GBM)

is a highly aggressive primary malignant tumor of the cen-

tral nervous system. Overall survival of patients with GBM

is poor, with an average survival of 18 months with maximal

therapy. The mainstay of GBM therapy involves maximal

and safe surgical resection. Intraoperative ultrasound is an

important tool in neurosurgical procedures for delineating

tumors from normal brain tissue is well known. However,

the resolution of conventional ultrasound imaging makes it

difficult to differentiate the boundary between normal and

GBM tissue. This is especially true when imaging is done

towards the end of surgery when tissue handling, bleeding

and residual tumor would appear similar and difficult to dif-

ferentiate using conventional ultrasound.23 The high scat-

terer diameter sensitivity of the H-scan could potentially

prove more efficacious for the precision in delineation

between tumor and non-tumorous tissue in the central ner-

vous system. This capability would contribute to the over-

arching objective of achieving maximal, yet safe resection,

while ensuring the preservation of function in adjacent brain

areas and minimizing associated morbidity. Specialized

probes with the H-scan imaging capability will be valuable

to delineate tumor and tumor-margins intraoperatively and

aid the neurosurgeon to achieve maximal and safe resection

to ensure best results for patients with brain tumors.

The goal of this study was twofold. First, to quantify

the effect of scatterer diameter and concentration on H-scan

images through simulations using the k-wave toolbox in

MATLAB.24 We successfully identified an H-scan parameter

dependent on the scatterer diameter and independent of the

scatterer concentration. We then tested the hypothesis that

H-scan imaging can be used to differentiate glioblastoma

tumors from normal brain tissue ex vivo.

II. METHODS

Hermite polynomials are defined as25

Hn tð Þ ¼ �1ð Þnet2 dn

dtn
e�t2 ; n ¼ 0;1;2;…; t 2 61: (1)

When Hn tð Þ is multiplied by G tð Þ ¼ e�t2 , then the poly-

nomials become Gaussian-weighted Hermite (GH) polyno-

mials. The energy of a GH polynomial is defined as

E ¼
ð1
�1

H2
nG2 tð Þdt: (2)

The GH polynomial is energy-normalized by dividing the

GH polynomial by the square root of its energy. Examples of

GH polynomials are shown in Fig. 1.

A. Algorithms

1. 2-convolution H-scan algorithm

In the 2-convolution H-scan algorithm, each RF line

was convolved parallelly with the energy-normalized GH2

and GH8 filters. GH2 represented the low-frequency compo-

nents of the backscattered signal and corresponded to the

red channel, representing larger scatterers. GH8 corre-

sponded to the high-frequency components and represented

the smaller scatterers.26–28 The mean intensity of the red

channel (MIRC) was computed to estimate the fraction of

large scatterers in the tissue.

2. 64-convolution H-scan algorithm

In the 64-convolution H-scan algorithm, each RF line

was convolved parallelly with energy-normalized GH ker-

nels of even orders ranging from 2 to 128 (Fig. 2). The peak

frequency of each filter was chosen to cover the bandwidth

of the received signal. Pseudo-coloring was then applied

based on the order of the best-matched (correlation) filter at

each pixel.4,29–31 Lower-order filters represented relatively

larger scatterers and were assigned a red color, while

higher-order filters represented relatively smaller scatterers

and were assigned a blue color.4,27 The color intensity was

varied based on the distance of the order value from the

midpoint, which is the 64th order. The intensity-weighted

percentage of red (IWPR) was computed for each location

according to the following equation:

IWPR ¼ Ri2RIi

Ri2RIi þ Ri2BIi
� 100%; (3)

where Ii is normalized color intensity for every pixel i. The

indices, i 2 B and i 2 R, correspond to the red and blue pixels

within the ROI, respectively. The IWPR is complementary to

FIG. 1. (Color online) Gaussian-weighted Hermite polynomials of the 2nd,

8th, and 32nd order, i.e., GH2, GH8, and GH32, respectively, in the (a) time

and (b) frequency domain.

FIG. 2. (Color online) Schematic of the 64-convolution H-scan algorithm.
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the intensity-weighted percentage of blue (IWPB), wherein

their sum equals 100%.4

B. Simulation setup

The k-wave simulation toolbox in MATLAB (R2020b, The

MathWorks Inc, Natik, MA) was utilized for this study. The

simulated output was the time series RF data generated from

linear array imaging. A computer running the Windows operat-

ing system with a 64-bit AMD EPYC 730 216-Core Processor

[@ 3.00 GHz], 512 GB RAM, and 24 GB VRAM NVIDIA

Quadro RTX 6000 was used. The simulations were performed

in GPU using the CUDA capability of the k-wave toolbox.

1. Medium

A two-dimensional computational grid was used for

all the simulations. The grid had 1024� 2048 pixels

(2.5 lm/pixel) including a 100 lm perfectly matched layer

to satisfy the boundary condition. A medium sound speed of

1540 m/s and a density of 1000 kg/m3 were used. No

frequency-dependent attenuation or dispersion of sound was

introduced. A total of 27 412 timesteps were taken, each of

256 pico-seconds.

2. Scatterer distribution

Micro-discs composed of polyethylene were simulated

as weakly scattering materials and served as an acoustic

model of cells in tissue. A sound speed of 1950 m/s and a

density of 960 kg/m3 were assumed for polyethylene.

Randomly placed monodispersed and bimodal scatterer

diameter distributions were simulated. A 1 mm layer of

water was assumed between the transducer and numerical

scatterer phantoms (NSPs).

(a) Monodispersed scatterer distribution: Fifty NSPs

were created, each with 10 independent and random

realizations. These NSPs were generated with five dif-

ferent concentrations (0.2%–1% w/v) and 10 different

scatterer diameters (15–150 lm).

(b) Bimodal scatterer distribution: Fifty-five NSPs were

created, each with 5 independent and random realiza-

tions. These NSPs were generated with five different

concentrations (0.2%–1% w/v) using a bimodal mix-

ture of two scatterer diameters: 50 and 90 lm. Eleven

different % volume (0%–100%) of 90 lm scatterers

were simulated. The NSP for 70% volume of 90 lm

scatterers and a total scatterer concentration of 1% w/v

is illustrated in Fig. 3(a).

3. Transducer

The transducer source was modelled after an L11-5v

linear array (used subsequently in experiments) with an ele-

ment width of 270 lm and a pitch of 300 lm. A total of 8 ele-

ments were active in the RF scan. The F-number was set to

1.2, consistent with the subsequent imaging experiments.

The transmit signal was a broadband 1 MPa GH4 pulse with

a central frequency of 7.6 MHz. Eight RF lines were

acquired for each NSP. The simulated transducer beam pat-

tern is shown in Fig. 3(b). To assess robustness, a Gaussian

noise with a signal-to-noise ratio of 20 dB was added to all

recorded RF lines.

C. Ex vivo experiments

1. Tissue sample preparation

Brain tumor samples were obtained from resected intra-

operative tissue specimens. A representative portion of the

tumor tissues from surgical excision was submitted for his-

topathologic evaluation, and the corresponding portion was

preserved in 10% neutral buffered formalin until histopatho-

logical confirmation. The samples were collected for the

study following informed consent from the patient/close rel-

atives, and the study was approved by Institute Ethics

Committee (Ethical clearance document No. NIMHANS/

23rd (BS & NS DIV.)/2020). Histologically confirmed cases

of Glioblastoma were utilized for the study (n¼ 11). Eleven

cases that satisfied the inclusion criteria were recruited for

the study (all male, 30–54 years age, parietal region¼ 6,

frontal region¼ 5). For controls, age matched and location

matched brain tissues (n¼ 11, all male, 35–55 years age,

parietal region¼ 6, frontal region¼ 5) were procured from

the Human Brain Tissue Repository (Brain bank) at the

National Institute of Mental Health & Neurosciences

(NIMHANS), sourced from postmortem of patients suc-

cumbing to road traffic accidents. All tissues were collected

within 24 h post-mortem and fixed in 10% neutral buffered

formalin (similar to brain tumor tissues).32,33 These samples

were acquired with informed consent from close relatives

and Ethical clearance from IEC (Ethical clearance document

no. NIMHANS/IEC (BS & NS DIV.) 26th MEETING/

2020-21). From the tissues, formalin-fixed tissue blocks

(3–7 mm thickness, 15–30 mm length and breadth) were

used for the study. Subsequently, the tumor and normal sam-

ples were characterized with ultrasound within two months

post-fixation.

FIG. 3. (Color online) (a) Representative numerical scattering phantom of a

bimodal distribution of 50 lm and 90 lm scatterers. (b) Simulated trans-

ducer beam profile.
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2. Tissue embedding in phantoms

To prepare the ex vivo brain tissue samples for acoustic

analysis, a standardized procedure was followed to embed

each sample in an agarose phantom. First, agarose (2% w/v,

J66369-22, Thermo Fisher Scientific, Mumbai, India) was

dissolved in de-ionized (MilliQ) water using a 700 W stan-

dard microwave oven (NN-ST266B FDG, Panasonic,

Madhya Pradesh, India) by heating the solution in 30-s inter-

vals. The resulting agarose solution was degassed in an

ultrasonic sonication bath at 50 �C for 30 min. Subsequently,

the solution was poured into a mold until half of the mold’s

volume (82 mm� 56 mm� 25 mm) and left to solidify at

room temperature (25 �C). The tissue sample was placed

carefully above the agarose gel. The remaining agarose

solution was cooled to a temperature of 35 to 40 �C, poured

over the tissue sample, and allowed to solidify. The height

of the top agarose layer was adjusted to be 6 mm above the

tissue sample to ensure that the imaging focus was at the

center of the sample.

3. Data acquisition

A standoff with degassed, de-ionized water was posi-

tioned above the phantom to facilitate acoustic propagation.

RF data were acquired at five independent imaging planes

for each tissue sample using a Vantage 128 system

(Verasonics, Kirkland, WA) equipped with a linear array

(L11-5v, center frequency of 7.6 MHz, Verasonics). The lin-

ear array was focused at a depth of 14 mm, which was

within the tissue sample. The transducer was placed such

that multiple reflections from the water and phantom interfa-

ces were not within the imaging field of view and were min-

imized by placing an acoustic absorber beneath the phantom

[Fig. 4(a)].

4. Attenuation compensation

Frequency-dependent attenuation coefficients were cal-

culated using the broadband, insertion-loss, pulse-echo

attenuation method [Fig. 4(b)].34 The attenuation coeffi-

cients of the brain tissues were then determined by subtract-

ing the attenuation coefficients of the reference agarose

phantom from the measured values. Each RF line was com-

pensated for the acoustic attenuation of the brain tissues.

5. H-scan imaging

For each RF line, the 64-convolution H-scan algorithm

was used by employing energy-normalized GH filters of

even orders ranging from 2 to 128. These filters spanned the

usable bandwidth of the linear array, i.e., 5–12 MHz. The

GH2 filter had a peak frequency of 5 MHz, while the GH128

filter had a peak frequency of 12 MHz. Pseudo-coloring was

then applied based on the order of the best-matched, maxi-

mum-correlated filter at each pixel. The IWPR was com-

puted for every pixel within the sample region of interest

(ROI). MATLAB was used for all post-processing tasks.

D. Statistical analysis

For the simulations, two-segment linear regression of

the MIRC and IWPR measurements were performed for the

NSPs with monodispersed scatterer distribution. The inflec-

tion points of the linear fits were defined as the maximum

scatterer diameter in which the MIRC and IWPR parameters

can be used to differentiate scatterer diameters at each con-

centration. A simple linear regression was performed for the

bimodal scatterer simulation. For the simulations, the stan-

dard deviation (SD) of the H-scan parameters was computed

for 10 independent realizations in the case of each monodis-

perse distribution and 5 independent realizations for each

bimodal distribution. The goodness of fit was based on the

root mean squared error (RMSE). The mean and standard

error of the mean (SEM) of the IWPR parameter was com-

puted for the normal and glioblastoma brain tissues (n¼ 11

samples per group and five imaging planes for each sample).

The Anderson-Darling test was used to verify that the data

sets of the IWPR estimates were normally distributed. The

two-sample F-test was used to determine whether the data

for the normal and glioblastoma samples had equal or

unequal variances. The independent two-tailed t-test was

used to determine whether the differences in IWPR esti-

mates between normal and glioblastoma tissue samples

were statistically significant. Statistical tests were performed

using MATLAB and GraphPad Prism 9.5.1 (GraphPad

FIG. 4. (Color online) (a) Schematic of the imaging setup. (b) Pulse-echo attenuation measurement setup.
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Software, Boston, MA). A p-value of less than 0.05 was

considered statistically significant.

III. RESULTS

A. Simulations

For monodisperse NSPs, the two-segment linear regres-

sion analysis of the MIRC and IWPR estimates revealed dif-

ferences in the inflection points [Figs. 5(a) and 5(b)].

Specifically, the inflection points for the MIRC estimates

ranged from 62 6 2.6 lm at 0.2% w/v to 69 6 1.9 lm at

1.0% w/v (Table I); whereas, those of the IWPR estimates

ranged from 120 6 7.2 lm at 0.2% w/v to 131 6 3.2 lm at

1.0% w/v, indicating that IWPR is sensitive to a broader

range of scatterer diameters. The inflection point generally

increases with concentration, suggesting a positive relation-

ship with both the MIRC and IWPR H-scan parameters.

However, the changes in the inflection points are relatively

small, i.e., 62–69 lm and 120–131 lm for MIRC and IWPR,

respectively.

The positive slope of the MIRC increased with increas-

ing concentration, from 0.78 6 0.041 at 0.2% w/v to

1.3 6 0.041 at 1.0% w/v [Fig. 5(a)]. Whereas, for IWPR, the

positive slope varied slightly across the concentrations

[Fig. 5(b)] without a clear trend, demonstrating concentra-

tion independence. In Fig. 5(c), linear regression analysis of

the IWPR for the bimodal distribution of 50 and 90 lm scat-

terers revealed that the trends at all concentrations overlap,

which indicates concentration independence. The positive

slope shows the sensitivity of IWPR to changes in the

bimodal distribution of scatterers. The RMSE also remained

low and relatively stable (ranging from 0.081 to 0.15) across

all concentrations, indicating consistent fit quality for all the

regressions.

B. Ex vivo experiments

1. Histopathology

Representative histopathology images of normal and

glioblastoma samples are shown in Fig. 6. Normal gray mat-

ter and white matter are shown in Figs. 6(a) and 6(b). Figure

6(c) shows a sample with tumor and necrosis regions.

Samples graded as 100% tumor and tumor regions with lep-

tomeningeal scars are shown in Figs. 6(d) and 6(e), respec-

tively. Tumor samples showed infiltrating high-grade

glioma with varying proportions of infiltrating neoplastic

astrocytes, necrosis, and vascular stromal component.

2. H-scan imaging

Representative B-mode images of ex vivo brain tissues are

shown in Figs. 7(a) and 7(b). The bright horizontal lines in the

B-mode images represent specular reflections from the tissue-

phantom interfaces. Figures 7(c) and 7(d) shows the H-scan

images of the brain samples. Without attenuation compensa-

tion, the IWPR estimates were significantly different

(p< 0.0001) between the normal brain and glioblastoma tissue

FIG. 5. (Color online) (a) Mean intensity of red channel (MIRC) estimates from the 2-convolution H-scan imaging of monodisperse NSPs with different

scatterer diameters and concentrations. Intensity-weighted percentage of red (IWPR) estimates from the 64-convolution H-scan imaging for (b) monodis-

perse and (c) bimodal scatterer distributions with varying scatterer concentration. In (c), the IWPR is plotted against the % volume of 90 lm scatterers. Error

bars represent the standard deviation of estimates.
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samples (43.0 6 1.0% versus 34.9 6 0.61%, respectively;

p< 0.0001). Acoustic attenuation compensation did not change

the IWPR values appreciably; the respective values for normal

and glioblastoma tissue were 44.1 6 1.4% versus

36.2 6 0.65% (p< 0.0001) (Fig. 8). There was only a 2.5% dif-

ference in mean IWPR estimates with and without attenuation

compensation for normal tissues and a 3.7% difference for glio-

blastoma tissues. Of note, these images were collected from a

small sample thickness (3 to 7 mm), which did not induce sub-

stantial attenuation spectrum shifts. When this technique is

implemented during intraoperative surgeries in the future, it is

envisaged to be performed using a probe which will be placed

in close proximity to the tumor. Therefore, the confounding

effects due to attenuation will be limited.

IV. DISCUSSION

The simulated results obtained from this study indicated

that the IWPR parameter could assess a broader range of

scatterer diameters compared to the MIRC parameter (Fig. 5

and Table I). The inflection point in Fig. 5 could be poten-

tially explained by scattering theory, wherein the spherical

Bessel function of the first kind of order 1 exhibits a first

peak around ka¼ 1.35 If a simulation is obtained for 3-D

spheres, it is plausible that we would obtain a first inflection

point at the appropriate combination of size and frequency,

which could help explain the inflection point observed in

Fig. 5. Further investigation with (computationally inten-

sive) 3-D simulations may provide more insight into this

phenomenon. We will consider such theories with more

realistic 3-D simulation setups in our future investigations to

gain a comprehensive understanding of the underlying

physics.

IWPR was demonstrated to be independent of scatterer

concentration and sensitivity to changes in the bimodal

scatterer distribution, which can be further applied to poly-

disperse scatterer distributions. Thus, the IWPR is a

diameter-dependent H-scan imaging parameter that can be

useful for visualizing pathological changes in tissues based

on changes in only scatterer diameters and not in scatterer

concentrations. Although our study showed that H-scan

derived estimates are independent of scatterer diameter, this

trend may not hold at very high scatterer concentrations. At

such high concentrations, multiple scattering effects can

dominate. Further, at high concentrations, scatterers may

form clusters or aggregates, effectively behaving as a single

TABLE I. Best-fit coefficients of two-segment linear regression and simple linear regression for monodisperse and bimodal distribution, respectively. Mean

(SD) are shown.

0.2% w/v 0.4% w/v 0.6% w/v 0.8% w/v 1.0% w/v

MIRC monodisperse Slope 0.78 (0.041) 0.98 (0.042) 1.1 (0.042) 1.2 (0.048) 1.3 (0.041)

Inflection point (lm) 62 (2.6) 64 (2.2) 65 (2.0) 68 (2.4) 69 (1.9)

RMSE 0.15 0.12 0.11 0.11 0.092

IWPR monodisperse Slope 0.58 (0.017) 0.61 (0.015) 0.63 (0.016) 0.59 (0.015) 0.62 (0.015)

Inflection point (lm) 120 (7.2) 123 (4.9) 126 (4.3) 129 (3.9) 131 (3.2)

RMSE 0.11 0.098 0.10 0.099 0.097

IWPR bimodal Slope 0.29 (0.020) 0.26 (0.017) 0.30 (0.019) 0.29 (0.018) 0.31 (0.018)

RMSE 0.10 0.081 0.091 0.084 0.085

FIG. 6. (Color online) Representative histopathology images of (a) normal cortex with gray matter and (b) white matter, and glioblastoma brain tissue sam-

ples with (c) regions of tumor and necrosis, (d) 100% tumor, and (e) tumor with leptomeningeal scar. (H&E stain; magnification¼ scale bar.)
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large scatterer rather than individual, isolated scatterers. The

effect of aggregation was not the goal of the current study

but can be explored in future studies.

Notably, H-scan imaging allows tissue differentiation

based on scatterers smaller than the resolution limit. In our

simulations, we investigated a scatterer diameter range

between 15 and 150 lm in diameter, which was below the

resolution limit of our imaging system—the axial and lateral

resolution (–6 dB) were 300 and 600 lm, respectively. Our

findings demonstrate the capability of H-scan imaging to

detect and spatially visualize relative differences between

scatterer diameters that are smaller than the imaging sys-

tem’s resolution limit.

We used the GH4 pulse in our simulations and experi-

ments. Recent papers on H-scan imaging have employed

Gaussian pulses due to their relative simplicity relative to

Gaussian-weighted Hermite polynomials. Notably, the

actual pulse generated from transducer excitation may not

be appreciably different from a Gaussian pulse. Thus, the

results obtained with GH4 pulses may not exhibit substantial

differences compared to the use of a simple Gaussian pulse,

as previously reported in Ref. 4.

We observed that H-scan imaging of glioblastoma sam-

ples had less red component compared to normal brain tis-

sue (Figs. 7 and 8). Although there is a lack of previous

studies on brain tumors, these trends are similar to those

observed in previous studies on breast, pancreas, and thyroid

malignancies.11,12,14–17 H-scan imaging of breast and thy-

roid tumors has shown that malignant tumors typically have

less red intensity than benign lesions.14–16 Moreover, H-

scan images of pancreatic tumors have shown that the red

intensity is inversely correlated with the stage of cancer.11,12

The less red or more blue hue in H-scan images of malig-

nant tumors suggest smaller scatterers due to the dense

aggregate of tumor cells, which are characterized by a

higher nuclear-cytoplasmic ratio than normal cells.

Glioblastoma, a highly malignant tumor, is cellular, com-

posed of cells that cluster together compared to normal brain

tissue. In addition to the tumor cells, glioblastoma also dis-

plays areas of necrosis, vascular proliferation, stromal alter-

ations, and fibrosis, which may influence the differences in

spectral properties of tumor and normal brain tissue.

Another study has shown that the red intensity in H-

scan images increases in malignant breast tumors with an

increasing number of chemotherapy sessions.17 On the con-

trary, Dicenzo et al. have reported a decrease in the acoustic

scatter diameter of breast tumors using quantitative ultra-

sound techniques in response to chemotherapy.36 This

apparent discrepancy may be due to changes in the stroma

and morphology, induced by chemotherapy.17 Further stud-

ies with both H-scan and QUS imaging and detailed histo-

pathological correlation may help ascertain these

differences.

Unlike quantitative ultrasound (QUS) techniques, H-

scan imaging is a qualitative approach for soft tissue charac-

terization.37–39 However, the main advantage for H-scan is

that it can display the relative differences in diameters of

acoustic scatterers between tissue regions at higher spatial

resolution than the kernel-based QUS methods. This capa-

bility can be useful for ensuring optimal delineation of brain

tumor margins and safe resection of tumors, wherein the

amount of brain tissue removed is critical.

In this study, formalin-fixed tissue samples were

assumed to have similar microstructure as living tissues,

which may be a reasonable assumption given that histology

also employs fixation primarily for excellent preservation of

cellular architecture that closely reflects in vivo tissue char-

acteristics, essential for diagnosis. While fixation alters tis-

sue hardness, it preserves cellular structure optimally aiding

FIG. 7. (Color online) B-mode images (a), (b) and H-scan (c), (d) overlaid onto the B-mode images of normal [(a), (c)] and glioblastoma [(b), (d)] brain tis-

sue samples.

FIG. 8. (Color online) Intensity-weighted percentage red (IWPR) of normal

brain and glioblastoma tissue samples. ****p< 0.0001.
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in cellular characteristic identification on light microscopy.

Adjacent normal brain tissue from the same subject with

glioblastoma could not be obtained, as its against surgical

practice, which made it challenging to evaluate the efficacy

of this approach for tumor margin assessment. Further stud-

ies on a larger sample size will be essential to fully under-

stand and attempt point to point correlation of H-scan

imaging of alterations of microstructure at the tissue level.

A limitation of our simulation study was that the acous-

tic impedance was considered equal for all the NSPs.

Further, the scatterers simulated in this study had moderate

scattering strengths and were not weak. Such scatterers have

been used previously for in vitro H-scan imaging stud-

ies.26–28 The varying acoustic impedance of each scatterer on

the concentration independence of IWPR needs to be

assessed in the future. Another limitation is that our work

was also based on 2-D simulations because of computational

considerations. Although 2-D simulations can provide a

good approximation, we plan to incorporate a 3-D simulation

setup in our future investigations to gain a comprehensive

understanding of the underlying physics and comparative

scattering theories. Nonetheless, the findings of this study set

the groundwork for subsequent in vivo studies. Attenuation

compensation based on image analysis,4,40 rather than mea-

surements of the pulse-echo attenuation method, may be nec-

essary to translate this approach. However, our IWPR results

indicate that attenuation compensation may not be necessary

when the tissue of interest is superficial.

V. CONCLUSION

The results emphasize the advantages of using IWPR as

an effective H-scan imaging parameter for analyzing scatterer

diameter distributions. The IWPR offers a broader range of

sensitivity compared to the MIRC parameter and remains

independent of the scatterer concentration. Additionally,

IWPR exhibits reliable performance in the presence of

bimodal scatterer distributions, making it a robust tool for var-

ious tissue scattering conditions. The simulation results were

supported by ex vivo experiments on glioblastoma and normal

brain tissues. The results revealed significant differences in

IWPR estimates between the two tissue types, demonstrating

the effectiveness of IWPR in distinguishing between brain

tumor and normal tissues, highlighting its potential as a tool

for tissue characterization and diagnosis.
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