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ABSTRACT
A reconstructed image in photoacoustic tomography (PAT) imaging modality can be blurred
because of some system-dependent effects – broad laser pulse, the limited bandwidth of the sen-
sors, acoustically attenuating medium and transducers with finite-size apertures having Gaussian
sensitivity profile. A robust deblurring method involving a system matrix is presented in this work.
Image reconstructionwas accomplished by using the backprojection (BP), interpolated time reversal
(ITR), Tikhonov regularization (TH) and total variationminimization (TV) schemes. Amodified version
of the BP algorithm was also explored for image reconstruction for finite transducers. Each factor of
blurringwas considered at a time. For themodel-basedmethods, the systemmatrixwas constructed
in presence of such a factor. Subsequently, the model matrix inversion method was deployed for
image formation. Quantitative values of some standard metrics were computed to assess the per-
formance of the reconstruction protocols. The visual inspection of the reconstructed images as well
as numerical values of the figures of merit revealed that the BP and ITR techniques generally fail to
remove blurring; however, themodel-basedmethods can provide distortion-free images under var-
ious conditions. For example, the numerical values of the Pearson correlation coefficient (PCC) for
all the cases showed a strong correlation between the nominal and reconstructed images for the TH
and TV techniques compared to the BP and ITR methods. The TV method can be utilized in practice
to facilitate the PAT image reconstruction free from system-dependent blurring.
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1. Introduction

Photoacoustic imaging (PAI) is a hybrid imaging modal-
ity that combines the advantages of optical and ultra-
sound imaging techniques in a single modality. The PA
tomography (PAT) imaging modality has diverse areas of
applications such as sentinel lymph node imaging, blood
vasculature and molecular imaging, tumour angiogene-
sis, breast imaging and brain imaging in small animals
and so on [1–5]. PAT image reconstruction can be per-
formed using analytical approaches referred to as the
backprojection and time reversal algorithms [6–8]. These
methods require a full view data set for faithful imaging
of the ground truth. They are fast and simple in gen-
eral but quantitatively less accurate. For the limited view
data set, it is worthy to apply the model-based techniques
for reconstruction [4,9–12]. These methods are compu-
tationally expensive but give fairly accurate results. The
Tikhonov regularization is one such approach that has
been extensively used for PAT reconstruction.

There are four common sources of blurring in PAT
imaging. These are (i) finite temporal width of the
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incident laser pulse, (ii) finite bandwidth of the detec-
tors, (iii) acoustically absorbing and dispersive coupling
medium and (iv) transducers with finite-size apertures.
In case of finite pulse width, the condition of stress con-
finement is not obeyed. The source and the surrounding
extracellular matrix both contribute to the generation of
the pressure signals. As a result of that, a thin source
behaves like an extended object giving rise to blurring
in the reconstructed image. In the second case, nar-
row bandwidth detectors only receive low-frequency sig-
nals. Therefore, sharpness of the edges of the object is
lost causing image blurring. Similarly, in the third case,
high-frequency waves are absorbed within the ambi-
ent medium during propagation from the source to
the detectors. Loss of high-frequency signals is respon-
sible for image blurring. In the fourth case, a trans-
ducer with finite aperture transforms an input delta pres-
sure pulse into a broad pulse. Consequently, the recon-
structed image becomes blurry and also tangential res-
olution degrades radially (with respect to the imaging
centre).
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Many studies have been conducted to remove or
reduce the amount of blurring from PAT images. For
example, Wang et al., deconvolved one-dimensional PA
signals with that of a point source and then a mod-
ified filtered backprojection algorithm was used for
image reconstruction [13]. The deconvolution procedure
removed the effect of the impulse response of the acous-
tic transducer and consequently, reconstructed images
exhibited good agreement with the original phantoms.
The Wiener filtering of the measured one-dimensional
PA signals before image reconstruction was also found
to improve the quality of the PAT images [14]. Rejesh
et al. utilized a deconvolution method for reducing blur-
ring, produced by finite width of the input laser pulse
and finite bandwidth of the detectors, from PAT images
[15]. The effect of absorbing medium on the PAT image
reconstruction has been widely studied by many groups
[16–18]. These studies suggest that image reconstruction
should be performed after compensation of frequency-
dependent acoustic attenuation loss to minimize image
distortion.

Li et al. and Roitner et al. designed special deconvo-
lution filters for deblurring (blurring occurs due to finite
size of the apertures of the detectors) [19,20]. Van et al.
compared the performance of various deconvolution fil-
ters in PAT imaging [21]. Recently, a modified delay and
sum algorithm has been developed to address the same
issue [22]. In this approach, the PA signal captured by a
finite transducer was distributed on several points lying
on the recording surface. This step was repeated for all
transducers and then the delay and sum algorithm was
implemented. The validity of the algorithm was tested
under different apodization conditions of the sensor as
well [23]. The properties of ultrasonic transducers can
be loaded into the system matrix and after that image
formation can be performed [24,25]. Chowdhury et al.
considered the role of the couplingmedium (between the
curved-array elements and the tissue medium) in PAT
imaging [26].

The construction and inversion of the system/model
matrix are computationally intensive tasks. However,
it is a single-step and universal process for correcting
the image distortions originating from different system-
dependent factors. The deconvolution-based methods
[13–15,19,20] practically do not pose any computational
burden but involve two steps – a deconvolution opera-
tion is performed first on one-dimensional signals and
then image reconstruction is carried out. Moreover, this
approach needs different deconvolution filters to miti-
gate different system-dependent factors. Therefore, the
system/model matrix approach seems to be universally
appealing.

The objectives of this work are to (a) explicitly and sys-
tematically consider the blurring conditions (for the light
source, detectors and the medium) while generating the
PA signals (forward data), (b) build a system matrix by
incorporating each blurring condition at a time for image
reconstruction using the l2 and l1 norm-based regulariza-
tion methods and (c) compare the performance of these
regularization algorithms with the analytical techniques.
Therefore, the major significance of this work is to build
a system matrix for each blurring factor. In particular, to
the best of our knowledge, constructions of systemmatrix
for a lossy and dispersive medium as well as for apodized
transducers have not been performed so far. These have
leaded to improved PAT imaging.

The image reconstruction for model-based proto-
cols is carried out by employing the matrix inversion
approach [27–29]. During this procedure, the system-
dependent parameters inducing blurring are expected
to be cancelled out and thus system-independent imag-
ing may be possible. To test this hypothesis, numerical
experiments for PAT imaging have been performed in
the presence of four blurring factors (one at a time). The
backprojection (BP), interpolated time reversal (ITR),
Tikhonov (TH) regularization and total variation min-
imization (TV) algorithms have been implemented for
image reconstruction when the PA signals have been
detected by the point sensors. However, BP, modified BP
(abbreviated asMBPand is a variant of the BP algorithm),
TH and TV methods have been deployed for image for-
mation when the PA signals have been captured by trans-
ducers with finite apertures. Numerical values of some
standard metrics have been computed to quantitatively
assess the performance of these algorithms. Our numeri-
cal results demonstrate that the TH and TVmethods can
be implemented in practice to form PAT images devoid
of system-dependent blurring.

2. Theoretical models

2.1. Modelling of the PAwave propagation

2.1.1. Wave propagation in a lossless medium
Consider that a biological tissue containing chro-
mophores is excited with a delta function, δ(t), laser
pulse. The equation representing the acoustic wave gen-
eration and propagation through an acoustically lossless
and nondispersive medium is given by [6],

∇2p(r, t)− 1
v2
∂2p(r, t)
∂t2

= −p0(r)
v2

dδ(t)
dt

, (1)

where v is the speed of sound of the medium and p0(r) is
the initial pressure build up within the imaging region.
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Various methods are available to solve Equation (1),
namely, pseudo-spectral method [7], finite element
method [30], Green’s function approach [31], etc. In PAT,
wemap the initial pressure rise, i.e. p(r, t) at t=0 or p0(r)
within the imaging region frommeasured boundary data
set.

2.1.2. Wave propagation in a lossy and dispersive
medium
The PA waves undergo attenuation when it travels
through biological tissue. The acoustic attenuation is, in
general, frequency dependent, and the attenuation coef-
ficient (α) can be modelled as [18]

α = α0ωγ , (2)

whereω is the angular frequency;α0 and γ are the prefac-
tor and exponent for the power law, respectively. The unit
of α0 is Np (rad/s)−γm−1; numerical value of γ typically
lies between 1 and 2 for biological tissue.

As the phase velocity of acoustic waves varies with fre-
quency, the acoustic attenuation is often followed by the
dispersion of those waves. As a result of that, the shape of
a propagating pulse changes [18]. The Kramers–Kronig
relations connect the frequency-dependent attenuation
and the dispersion [32]. A general dispersion relation
satisfying Equation (2) can be written as [33]

k(ω) = ω

v
+ iα0|ω|γ + α0 tan(πγ /2) ω|ω|γ−1, (3)

where k(ω) is the frequency-dependent wave num-
ber. The corresponding time-independent wave equation
becomes

[∇2 + k2(ω)]p(r) = 0. (4)

The solution to Equation (4) can be obtained using
the Green’s function approach. The appropriate Green’s
function in 3D becomes [7]

G(r, r0) = eik(ω)|r−r0|

4π |r− r0| ,

= eiω|r−r0|/v

4π |r− r0|e
−α0|r−r0|(|ω|γ−i tan(πγ /2) ω|ω|γ−1),

(5)

where r and r0 are the source and field points, respec-
tively. The second exponential term in Equation (5) is
responsible for attenuation and dispersion of the acoustic
wave while propagating through the medium.

2.2. Image reconstruction algorithms

2.2.1. Analytical approaches
Let us consider p(r0, t) is the pressure measured at r0 at
time t. The universal BP formula for image reconstruc-
tion in terms of p(r0, t) written as [6]

pb0(r) =
∫
�0

b
(
r0, t = |r− r0|

v

)
d�0/�0, (6)

where b(r0, t) is the BP term and is given by

b(r0, t) = 2p(r0, t)− 2t
∂

∂t
p(r0, t), (7)

and the detection element dS0 subtends a solid angle of
d�0 at r. The total solid angle subtended by the whole
detection surface at point r is denoted by �0. Only the
first term of Equation (7) has been considered (for sim-
plicity) herein during the implementation of Equation (6)
for image reconstruction.

Note that p(r0, t) is the pressure measured by a point
detector positioned at r0 at time t. However, a realistic
detector has a finite size. The impinging pressure waves
become spatially averaged due to the finite aperture effect
and hence, the collective signal (over the surface area S)
can be expressed as [23]

p′(r0, t) =
∫
S
p(r′0, t)W(r′0)d

2r′0, (8)

where W(r′0) is the sensitivity profile of the detector. It
can be taken as [23]

W(r′0) =
⎧⎨
⎩
1, when the profile is uniform

e
−
|r′0 − r0|2

2σ 2 , when the profile is Gaussian
(9)

where σ is the standard deviation for the Gaussian
apodization function and r0 denotes the centre of
the detector. One can use the resultant signals [i.e.
Equation (8)] detected by the sensors with finite aper-
tures for image reconstruction via the BP algorithm. The
spatial averaging of the PA signals for finite detectors
introduces blurring in the reconstructed images. The
amount of blurring can be reduced by decreasing σ of the
Gaussian apodization function [23]. In this work, a finite
detector (a line element in two dimensions) has been bro-
ken into many points and the resultant signal (recorded
by that detector) has been distributed in the same Gaus-
sian manner over those points [34]. After that, the con-
ventional BP algorithmhas been applied for image recon-
struction. This is termed as the MBP algorithm, which
has been found to remove blurring effectively.
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The TR algorithm can be used to determine p0(r)
inside the imaging region [7]. It assumes that themedium
is acoustically homogeneous. It first performs the for-
ward simulation up to time t = T and records PA pres-
sure at the detector locations. After that, it numerically
solves the time-dependent wave equation in the back-
ward time direction considering measured data as the
boundary constrain. The spatial map of pressure at t = 0
can be treated as the reconstructed image. The num-
ber of detectors can be increased using an interpola-
tion scheme before performing the inverse simulation to
improve image reconstruction.

2.2.2. Systemmatrix approaches
The forward model for the PAT imaging can be cast in
terms of a system of linear equations as [35]

Az = b, (10)

with A ∈ R
m×n, b ∈ R

m and z ∈ R
n. Here, A is the sys-

tem/model matrix [11]. It contains responses of all the
pixels present inside the imaging region at the detector
locations. The vector b is the pressure data measured at
the boundary and z is the map of initial pressure rise. A
unique solution for Equation (10) exists whenm = n and
it can be obtained easily. Unique solution does not exist
ifm �= n.

Equation (10) can be solved utilizing the TH method.
In this case, the following cost function is minimized
[11,36]:


 = ||Az − b||22 + λ2||Lz||22, (11)

where λ is the regularization parameter and L is the reg-
ularization matrix (they control the smoothness of the
solution); ||.||2 is the l2 norm. The identity matrix (I) is
the standard choice for L. The solution to Equation (11)
for L = I becomes

zTH = (ATA+ λI)−1ATb, (12)

where T is the transpose operation for a matrix. The
choice of the appropriate regularization parameter is an
important factor of the TH scheme. The reconstruction
result depends on this parameter, which is known to fil-
ter out some of the natural features present in the actual
image.

The total variation minimization method can also be
employed to solve Equation (10). Here, the cost function
looks like [37]


 = η

2
||Az − b||22 +

∑
i
||Diz||1, (13)

where Di is the discrete gradient operator on z at the ith
position. Note that η is the primary penalty term (a pos-
itive quantity). In this work, image reconstruction has
been performed exploring the TH and TV protocols.

2.3. Quantitative assessment of the reconstruction
schemes

Some image quality parameters have been computed to
assess the performance of the reconstruction schemes.
They are briefly described here.

Error norm (ERN): The ERN can be estimated by
computing the following formula [25]:

ERN = ||z − zr||2, (14)

where z and zr are the nominal and estimated val-
ues, respectively. ERN becomes zero when z and zr are
identical.

Pearson correlation coefficient (PCC): The PCC can be
defined as [25]

PCC = COV(z, zr)
ξzξzr

, (15)

where COV, ξz and ξzr are the covariance between two
image matrices, standard deviation of z and standard
deviation of zr, respectively. It quantifies the similarity
between the actual and the reconstructed images. The
PCC value varies from –1 to 1. Better reconstructions
have higher PCC values.

Contrast to noise ratio (CNR): The formula for calcu-
lating the CNR is [38]

CNR = μroi − μback

(ξ 2roinroi + ξ 2backnback)
1
2
, (16)

where, ‘roi’ and ‘back’ are the source and back-
ground regions of the reconstructed image as shown
in Figure 1(b). Here, μ and ξ represent the mean and
standard deviation, respectively; nroi = Aroi/Atotal and
nback = Aback/Atotal where Aroi and Aback are the total
number of pixels in the actual image with p0 �= 0 and
p0 = 0, respectively; Atotal is the total number of pixels
in the original/reconstructed image.

Signal to noise ratio (SNR): The SNR can be computed
from [11]

SNR = 20 log10

(
M
ξback

)
, (17)

whereM is the peak value of pressure in the ’roi’.
Structure similarity index (SSIM): The SSIM is used to

measure the similarity of the reconstructed image with
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respect to the source. The SSIM can be computed using
the following equation as [39]

SSIM = (2μzμzr + c1)(2 COV(z, zr)+ c2)
(μ2

z + μ2
zr + c1)(ξ 2z + ξ 2zr + c2)

, (18)

where c1 and c2 are the variables to stabilize the above
equation in case of weak denominator.

3. Simulationmethodology

3.1. Forward simulation

The k-Wave toolbox was utilized to compute the PA
signals [7]. Figure 1(a) shows the schematic of the sim-
ulation setup in 2D. A vasculature phantom as shown
in Figure 1(b) was considered in this study. The size of
the computational domain was 1101× 1101 grid points.
The length of each pixel was 0.1mm. An absorbing layer
of width 2mm was placed to wrap the computational
domain. A total of 80 detectors (denoted by red solid cir-
cles in Figure 1a) were circularly placed over an angle 2π
at a distance of 50mm from the centre of the simulation
domain. The size of the imaging region was 20×20mm2

(consisting of 201×201 grid points). The density and
the speed of sound of the medium were taken as 1000
kg/m3 and 1500 m/s, respectively. The numerical phan-
tom was loaded occupying the imaging region and then
the forward simulation was performed. The PA signals
were acquired by the detectors. For each PA signal, pres-
sure data for 2500 time points with an interval of 20 ns
were recorded. A 40-dB noise was added to such a sig-
nal (using AddNoise function of the k-Wave toolbox).
The forward simulation code was executed in a virtual
machine (RAM: 256GB, cores: 80, clock speed: 2.19GHz,

processor: Intel Core (Skylake, IBRS), OS: CentOS). The
execution time was about 17 minutes.

Four different types of simulations were conducted in
this study. At first, the width of the input Gaussian light
pulse was sequentially increased (300, 600 and 900 ns)
and accordingly, the PA signals were generated. Gener-
ally, PAT imaging is done using 10 ns laser pulses from
Nd:YAG lasers. For pulsed laser diodes, the pulse width is
of the order of 400 ns [15]. The detectors were considered
point detectors with centre frequency 2.25MHz and 70%
bandwidth. The medium was treated as acoustically loss-
less and nondispersive. In the second case, we took a delta
function light pulse and point detectors with 2.25 MHz
as the centre frequency. However, the bandwidth was
gradually elevated (30%, 50% and 90%). The standard
choice for PAT imaging is 70% bandwidth. In the third
case, medium properties were varied as α0 = 0.75 dB
MHz−γ cm−1 and γ =1.5, α0 = 5.75 dB MHz−γ cm−1
and γ =1.5 and α0 = 3.75 dBMHz−γ cm−1 and γ =2.5.
Nevertheless, the properties of the exciting light pulse
(delta function light pulse) and detectors (point detectors
with centre frequency 2.25 MHz and 70% bandwidth)
were kept as constants. The first combination of α0 and
γ is similar to that of the breast tissue. The second and
third combinations produce higher attenuation. In the
fourth case, detectors with finite size were utilized to cap-
ture the PA signals. The diameter (line element in 2D) of
the detectorswas fixed to 6mmbut thewidth of theGaus-
sian apodization was successively changed, σ = 0.6, 2.0
and 5.0mm. Other parameters remained unaltered (i.e.
delta function light pulse, point detectors with centre
frequency 2.25 MHz and 70% bandwidth, and acous-
tically lossless and nondispersive medium). The same
simulations were also conducted for 12mm sensors.

Figure 1. (a) Schematic of the PA simulation geometry in 2D; 80 sensors have been uniformly placed around the imaging region with
50mm as the scanning radius. (b) Demonstration of the vasculature phantom. The regions inside the yellow and blue boxes have been
considered as the region of interest (‘roi’) and the background area (‘back’). The PA pressure data of these sectors have been utilized
for computing the signal to noise ratio of the reconstructed images. The numerical values of the pixels along the red line of the source
phantom and the reconstructed images have been compared.
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3.2. Implementation of BP, MBP and ITR algorithms

Equation (6) was directly utilized for point detectors for
image reconstruction by the BP algorithm. The ITR tech-
nique is a reconstruction method offered by the k-Wave
toolbox. For finite sensors, each detector was divided into
a number of points (51 points for 6mm sensor and 101
points for 12mm transducer). Each point represented an
ideal point detector and pressure data at such points were
stored during the forward simulation. Equation (8) was
used to calculate the resultant signal for each detector.
The BP algorithm was then applied using the resultant
signals. In the case ofMBP, a resultant signal (recorded by
a detector) was redistributed in the same Gaussian man-
ner over those points and after that, the BP scheme was
followed [23,34].

3.3. Building of systemmatrix

The TH and TV are system matrix based reconstruc-
tion protocols. The PA pressure data corresponding to
1500 time points (from 1001 to 2500) were used for
constructing theAmatrix aswell as for image reconstruc-
tion. The sizes of matrices became: A matrix – m× n =
120000× 40401, z matrix – 40401× 1 and b matrix –
m = 120000× 1. The details of the construction of A
are as follows. Consider that the PA signal [denoted by
ψGA(t)] produced by a corner pixel GA (top left most
corner) and detected at D was (see Figure 1a). This signal
was treated as the reference signal. The PA signal emitted
by a point GB could be estimated to be (via the scaling
and shifting properties of the PA signal),

ψGB(t) =
√
dref
d
× F−1

[
F[ψGA(t)]× ei

ω
v (d−dref )

]
,

(19)
where F and F−1 are the forward and inverse Fourier
transform operators; dref and d are the distances of
the grid points GA and GB from D, respectively.
The multiplication has to be performed element wise.
Equation (19) allowed us to calculate the PA signals gen-
erated by all grid points (traversing column-wise starting
from the top left most corner) and recorded at D. Those
signals were appended in the A matrix – rows from 1 to
1500 and columns from 1 to 40401. The signals to other
detectors could also be determined and loaded into the
A matrix. In the first case, the finite width of the laser
pulse was considered while calculating ψGA(t). Simi-
larly, in the second case, the bandwidth of the detectors
was also included within the forward simulation provid-
ing realisticψGA(t). The time taken to build theAmatrix
for these cases was about 15 minutes. The algorithm for

building the A matrix for point detectors is presented in
Algorithm 1.

In the third type of simulation, the medium was cho-
sen to be acoustically lossy and dispersive. The signal for
GB could be computed from that of GA as

ψGB(t) =
√
dref
d
× F−1

[
F[ψGA(t)]

× ei(d−dref )[
ω
v +iα0(|ω|γ−i tan(πγ /2) ω|ω|γ−1)]

]
.

(20)

Therefore, in this case also the PA signals for all pixels
were computed for all detector locations and hence, were
loaded into the Amatrix. The execution time to form the
A matrix for this case was approximately 1 hour and 20
minutes in the same virtual machine. The algorithm is
given in Algorithm 1.

Algorithm 1: Building of the system matrix A for
ideal point detectors.

Input: The position coordinates of the corner grid
(xgref and ygref ) and the reference detector (xdref
and ydref ); speed of sound (v); position coordinate
array for all grid points (xg and yg); position
coordinate array for all detectors (xd and yd)
Output: Amatrix
Step 1: Generate the reference signal (ψGA)
Step 2: Assign LL←−length of ψGA
Step 3: Calculate the reference distance

dref = [(xdref − xgref )2 + (ydref − ygref )2]
1
2

Step 3: for j = 1, 2,..., length of xd do steps R1- -R3
R1: Ns←− (j− 1)× LL+ 1
R2: Nf ←− j× LL
R3: for k = 1, 2, ..., length of xg do steps i-iv
i. Compute

d = [(xd(j)− xg(k))2 + (yd(j)− yg(k))2]
1
2

ii. Estimate ψ using Equation (19) for
nonabsorbing medium

iii. Estimate ψ using Equation (20) for absorbing
and dispersive medium

iv. for u = Ns, ..., Nf do step a
a. A(u, k)←− ψ(u+ 1− Ns)

The A matrix for finite detectors was created in the
following manner (i.e. for the fourth type of simula-
tion). At first, the PA signal emitted by a corner grid and
detected at a point lying on a detector was computed and
stored. The next step was to compute the PA signals at
all the points (e.g. 51 points for a 6-mm detector and
101 points for a 12-mm detector) of that detector using
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Equation (19). Such signals (with appropriate Gaussian
weights) were summed up to obtain the resultant sig-
nal. In this way, the PA signals for all grid points at that
detector could be calculated and assigned to theAmatrix.
This step was repeated for other detectors. Algorithm 2
summarizes this algorithm. The computation time for
the construction of the A matrix was approximately 2
hours and 4 hours, for 6mm and 12mm transducers,
respectively.

Algorithm2:Amatrix formation for finite detectors.
Input: The position coordinates of the corner grid
(xgref and ygref ) and the reference detector (xdref
and ydref ); speed of sound (v); position coordinate
array for all grid points (xg and yg); position
coordinate array for centers of all detectors (xd and
yd); position coordinate array for all elements of all
detectors (xdel and ydel); number of point elements
in each finite detector (Nel); diameter of the
detector (diaD)
Output: Amatrix
Step 1: Compute dl = diaD/(Nel − 1)
Step 2: Compute Nmel = floor(Nel/2)+ 1
Step 3: Generate the reference signal (ψGA)
Step 4: Assign LL←−length of ψGA
Step 5: Calculate the reference distance,

dref = [(xdref − xgref )2 + (ydref − ygref )2]
1
2

Step 6: for j = 1, 2, ..., length of xd do steps R1- -R3
R1: Ns←− (j− 1)× LL+ 1
R2: Nf ←− j× LL
R3: for k = 1, 2, ..., length of xg do steps i- -iii
i. Declare a vector ψnew of the same length of ψ

and initialize with 0s
ii. for el = 1, 2, . . . ,Nel do steps S1- -S5
S1. ComputeW using Equation (9)
S2. Assignmn←− (j− 1)× Nel + el
S3. Compute

d = [(xdel(mn)− xg(k))2 + (ydel(mn)− yg(k))2]
1
2

S4. Estimate ψ using Equation (19) for
nonabsorbing medium

S5. ψnew←− ψnew +W × ψ
iii. for u = Ns, ..., Nf do step a
a. A(u, k)←− ψnew(u+ 1− Ns)

3.4. Implementation of the TH and TV algorithms

The image formation was accomplished subsequently.
The regularization toolbox was used for the TH scheme
[36]. The total time for the singular value decomposition
and image reconstruction was nearly 3 hours 30 minutes

for the point detectors. It took around 2 hours 30 min-
utes for the finite sensors in the samemachine. The TVAL
toolbox was utilized to implement Equation (13) for
image creation. The numerical value of another penalty
parameter β was given as an input to the function TV3.
Various values ofβ were tried and the value providing the
best-reconstructed image of a test source phantom was
used in all simulations. The execution time for TV was
≈ 10 minutes for point detectors, around 17 minutes for
6mm detectors and 20 minutes for 12mm transducers.

3.5. Analysis of the reconstructed images

The quantitative values of various image quality parame-
ters were then computed using Equations (14)–(18). The
computations of the ERN and PCC were trivial. The pix-
els belonging to the source and the background regions
were counted first in the ground truth image and subse-
quently, nroi = Aroi/Atotal and nback = Aback/Atotal were
computed. The mean and the standard deviation of PA
pressure were also estimated from these sets of pixels for
the reconstructed image. After that, Equation (16) was
evaluated to estimate the CNR for each reconstructed
image. The ‘roi’ and ‘back’ regions contained 49 and 169
pixels, respectively (see orange and blue boxes, respec-
tively in Figure 1b) and pressure values of these pixels
were utilized to calculate the SNR of that ‘roi’ region
of a reconstructed image. To estimate the SSIM of an
image, we first fixed the scale (minimum and maximum
pressure) and mapped the pressure values of both the
images (ground truth and reconstructed) with respect
to this scale. Then all the pressure values were normal-
ized by the maximum pressure. Various pressure values
of pixels varying from 0 (minimum pressure) to 1 (max-
imum pressure) were divided into 256 levels. This step
was performed for both the images (ground truth and
reconstructed). Thereafter, these images were given as
the inputs into the ssim function of MATLAB and the
numerical value of SSIM was obtained as the output.

4. Numerical results

4.1. PA signal estimation

Figure 2(a) shows that the PA signal (ψGA) simulated
by the k-Wave toolbox for the corner pixel (source)
and detected by a point sensor located at a distance
dref = 3.6 cm from the source (see Figure 1a). Figure 2(b)
displays the PA signals generated by the k-Wave and
Equation (19) when the source to detector distance is
d = 6.4 cm. The coupling medium is acoustically loss-
less. These two signals (forψGB) exhibit a perfect match.
Similarly,ψGA provided by the k-Wave toolbox for lossy
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Figure 2. (a) PA signal generated by the k-Wave toolbox for an acoustically lossless medium and when source to detector distance is
dref = 3.6 cm. (b) Plots of the PA signals generated by the k-Wave toolbox and Equation (19) for the samemediumbut source to detector
distance is d = 6.4 cm. (c) Same as (a) but for an acoustically lossy and dispersivemediumwithα0 = 0.75 dBMHz−γ cm−1 and γ = 1.5.
(d) Same as (b) but for the lossy and dispersive medium and Equation (20) has been used to calculateψGB.

and dispersive medium with α0 = 0.75 dB/MHzγ /cm
and γ = 1.5 is plotted in Figure 2(c). In this case, dref =
3.6 cm. The computed PA signals (ψGB) for the k-Wave
and Equation (20) shown in Figure 2(d) look identi-
cal when the source and the detector are separated by
d = 6.4 cm. Figure 2 confirms that Equation (19) and
Equation (20) can be used for estimating the PA signals
during the system matrix formation.

4.2. Variation of pulse width

The reconstructed images for different pulsewidths of the
incident laser beam are shown in Figure 3. Each image
is normalized with respect to its maximum pixel value.
All the reconstruction algorithms discussed above have
been utilized. The regularization parameter λ used in the
TH method is placed on the top of each image in the
third column. The penalty parameters η and β for the TV
scheme are provided on the top of the respective images.
The width of the excitation pulse is 300 ns in the case of
Figures 3(a–d). The line plots for thesemethods along the
red line (as shown in Figure 1b) are given in Figure 3(e).
The same line plot for the source image is also drawn in
this figure for comparison.

Similarly, the reconstructed images and line plots
for two other pulses (with widths 600 and 900 ns) are
included in Figures 3(f–j) and Figures 3(k–o), respec-
tively. Figures 3(a, f and k) clearly depict that blurring

enhances with the expansion of the excitation light pulse.
This is true for Figures 3(b, g and l) as well. The BP
and ITR schemes are not able to reproduce the struc-
ture of the vasculature faithfully. Uniform background
noise is present in the BP images whereas it is less promi-
nent in the ITR images at least at the boundaries. Fig-
ures 3(c, h, m, d, i , n) demonstrate that the TH and TV
provide a significantly better reconstruction of the ini-
tial pressure map in all cases. The TH images also have
uniform background noise but it is comparatively less
than the BP and ITR images. The TV performs far bet-
ter than the other algorithms. The line plots for the BP
and ITR methods (dash-dash and dot-dot lines, respec-
tively) deviate greatly from the source line (black line)
but those of the TH and TV techniques (red circle and
green diamond, respectively) match well with the source
line.

The numerical values of the parameters quantifying
the performance of these algorithms are given in Table 1
(rows 4–8). The numerical value of ERN in general
increases as the pulse width of the laser beam increases
for the BP algorithm (second, sixth and tenth columns
and fourth row of Table 1). This is obvious because
blurring increases for broader laser pulses. The PCC
decreases from 0.45 to−0.20 when the width of the laser
pulse changes from 300 to 900 ns, respectively (see row
5, columns 2 and 10); CNR and SSIM also follow the
same trend. Their values go down from 0.48 and 0.34
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Figure 3. (a)–(d) Reconstructed images of the vasculature phantom for the BP, ITR, TH and TV algorithms, respectively, using ideal point
detectors when 300 ns laser pulse is used to excite the tissue. Each image is normalized by its maximum pixel value. (e) The variation of
normalized pressure for each image along the red line (as shown in Figure 1b). (f–j) Same as (a–e) but for the 600 ns input laser pulse,
respectively. (k–o) Same as (a–e) but for the 900 ns incident laser pulse, respectively.

Table 1. Quantitative analysis of the performance of various reconstruction algorithms based upon some standard parameters in cases
of the finite laser pulse (rows 1–8), finite bandwidth of detectors (rows 9–16) and for different attenuating media (rows 17–25). The unit
of SNR is dB.

Pulse width

300 ns 600 ns 900 ns

Metric BP ITR TH TV BP ITR TH TV BP ITR TH TV

ERN 38.24 40.50 29.79 26.54 51.72 50.91 26.17 21.49 49.33 49.08 25.10 26.50
PCC 0.45 0.07 0.66 0.74 –0.06 –0.27 0.74 0.84 –0.20 –0.27 0.79 0.85
SNR 15.13 17.22 20.96 30.66 14.27 14.12 22.63 34.10 16.10 16.61 24.49 36.50
CNR 0.48 0.40 0.50 0.74 0.47 -0.10 0.80 1.12 –0.05 –0.53 1.05 1.18
SSIM 0.34 0.47 0.52 0.85 0.17 0.44 0.58 0.88 0.27 0.47 0.63 0.87

Bandwidth

30% 50% 90%

Metric BP ITR TH TV BP ITR TH TV BP ITR TH TV

ERN 47.77 42.99 41.54 40.68 42.86 40.47 32.28 28.49 27.57 32.21 19.54 9.79
PCC 0.27 0.18 0.41 0.52 0.38 0.28 0.59 0.75 0.68 0.54 0.87 0.96
SNR 14.43 18.31 22.13 34.64 16.17 21.61 23.43 33.92 19.60 28.06 26.52 34.58
CNR 0.33 0.25 0.52 0.70 0.57 0.49 1.00 1.48 1.65 1.36 2.48 3.07
SSIM 0.34 0.62 0.49 0.76 0.37 0.64 0.60 0.87 0.44 0.68 0.60 0.91

Absorption parameters

α0 = 0.75dB/MHzγ /cm α0 = 5.75dB/MHzγ /cm α0 = 3.75dB/MHzγ /cm

γ = 1.5 γ = 1.5 γ = 2.5

Metric BP ITR TH TV BP ITR TH TV BP ITR TH TV

ERN 47.62 30.99 24.27 21.91 48.91 29.95 19.71 28.28 28.17 28.54 28.33 32.54
PCC 0.12 0.60 0.79 0.86 -0.04 0.63 0.83 0.68 0.65 0.65 0.66 0.64
SNR 10.31 32.32 26.14 35.51 21.18 53.83 31.17 53.74 32.72 50.10 21.32 60.34
CNR 0.62 1.72 2.09 2.32 -0.05 2.30 3.52 2.43 2.43 2.37 2.31 2.21
SSIM 0.17 0.72 0.62 0.90 0.50 0.74 0.63 0.75 0.68 0.75 0.30 0.74

to –0.05 and 0.27, respectively (see rows 7 and 8, columns
2 and 10). The SNR values exhibit negligible variation
for the three cases. Similar observations can be made for
the ITR scheme. The numerical values of these parame-
ters, in general, suggest that the BP algorithm has a slight
edge over the ITR scheme. The quantitative estimates for

the figures of merit for the TH and TV protocols exhibit
small variation and remain on the higher side [e.g. PCC
= 0.85, SNR = 36.50 dB and SSIM = 0.87 for the TV
scheme at 900 ns laser pulse (see column 13, rows 5, 6 and
8)] providing faithful reconstructed images independent
of the pulse width of the input laser.
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Figure 4. (a)–(d) Normalized reconstructed images of the vasculature phantom for the BP, ITR, TH and TV methods, respectively for
ideal point detectors with 30% bandwidth. (e) Plots of normalized pressure of the reconstructed images and of the ground truth along
a horizontal line (red line in Figure 1b). (f )–(j) and same as (a)–(e) but for detectors with 50% bandwidth, respectively. (k)–(o) Same as
(a)–(e) but for sensors with 90% bandwidth, respectively.

4.3. Variation of bandwidth

The first row of Figure 4 displays the images of the vas-
culature phantom reconstructed by the four methods as
stated above for 30% bandwidth of the detectors. The
delta light pulse was used to excite the region of interest.
The second and third rows represent the reconstructed
imagesmapped from the PA signals captured by detectors
with 50% and 90% bandwidths, respectively. Figures 4(e,
j, o) are the line plots for these images along the same
horizontal line as for Figure 3.

Prominent image blurring can be seen for 30% band-
width in all the cases. In general, no method is able to
reconstruct the ground truth faithfully. This is also evi-
dent from Figure 4(e). Image reconstruction improves
for each method as the detection bandwidth increases.
The pressure distribution inside the source is bettermim-
icked in these cases (see Figures 4j and o) than that
of Figure 4(e). Background noise appears in a similar
manner as discussed in the previous case (Figure 3).
As expected, the contrast in the images improves with
increasing transducer bandwidth. The TH and TV tech-
niques perform better than the BP and ITR methods at
each level of bandwidth.

Table 1 (rows 12–16) presents the estimated values of
the metrics. The numerical values of the metrics demon-
strate expected changes as the bandwidth grows from
30% to 90% for the BP and ITR models. For example,
ERN decreases from 47.77 to 27.57, PCC increases from
0.27 to 0.68, SSIM varies from 0.34 to 0.44 for the BP
technique (see columns 2 and 10, rows 12, 13 and 16),
whereas ERN drops from 42.99 to 32.21, PCC rises from
0.18 to 0.54, SSIM changes from 0.62 to 0.68 for the

ITR formalism (see columns 3 and 11, rows 12, 13 and
16). The corresponding values for the TH framework
always remain at the higher levels for each bandwidth
condition showing that better image reconstruction is
possible using this technique and those of the TV pro-
cedure attains the highest values establishing that it is the
best image reconstruction technique [e.g. PCC = 0.96,
CNR = 3.07, SSIM = 0.91, etc. (see column 13, rows
13, 15, 16)].

4.4. Variation ofmedium attenuation

The frequency-dependent acoustic attenuation (accom-
panied by dispersion) is another source of blurring in
the reconstructed images. Three different cases have been
analysed. The reconstructed images for the vasculature
phantom obtained for the three settings of the attenu-
ation parameters are arranged in the first, second and
third rows, respectively in Figure 5. The line plots are
presented in the fifth column. Figure 5(a) shows that the
BP method fails to remove blurring. However, the other
methods provide relatively less blurry images (see Fig-
ures 5 b–d). In fact, blurring decreases as we move from
left to right. Figure 5(e) also exhibits the same trend.
Contrast decreases and blurring increases as the acoustic
attenuation increases (see rows 2 and 3). In other words,
the heights of the amplitudes decrease and widths of the
branches increase (see Figures 5 j and o).

The quantitative comparison of the algorithms is given
in Table 1 (rows 21–25). The computed values for the
BP algorithm are shown in the second column (for the
first attenuating medium) and they are in general in the
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Figure 5. (a)–(d) Image reconstruction of the vasculature phantom by the BP, ITR, TH and TV algorithms, respectively for α0 = 0.75
dB/MHzγ /cm, γ = 1.5 and for ideal point detectors. (e) Plots of normalized pressure along the red line (see Figure 1b) for the source and
the reconstructed images. (f )–(j) Same as (a)–(e) but for α0 = 3.75 dB/MHzγ /cm, γ = 1.5, respectively. (k)–(o) Same as (a)–(e) but for
α0 = 5.75 dB/MHzγ /cm, γ = 2.5, respectively.

lower side due to image blurring. The ITRmethod works
better than the BP method in this case (third column).
For example, the PCC and SSIM for the ITR method are
about 5 and 4 times higher than those of the BP algorithm
(rows 22 and 25, columns 2 and 3, Table 1). The numer-
ical values for the ITR technique remain similar for the
second and third media (columns 7 and 11, Table 1).
The TV algorithm performs marginally better than the
TH scheme. The numerical values of SNR and CNR have
increased significantly because of noise-cleaning owing
to attenuation (rows 23 and 24; columns 4 and 5, 8 and 9,
12 and 13, Table 1).

4.5. Variation of sensor apodization

Reconstructed images with different Gaussian apodiza-
tions are portrayed in Figure 6 for the 6mm transducers.
As expected, blurring increases as the width of the Gaus-
sian apodization increases (i.e. strong to weak apodiza-
tion). It is clear from the BP images (see Figures 6a, f, k).
Blurring as well as background noise levels are compara-
tively less in the images generated by the MBP algorithm
(see Figure 6 b, g, l). In addition to blurring, tangential
resolution degradeswhenwemove radially outward from
the centre of the reconstructed image. It is interesting

Figure 6. (a)–(d) Simulated images by the BP, ITR, TH and TV techniques, respectively for the vasculature phantom using finite-size
detectors with σ = 0.6mm and 6mm as the diameter of each transducer. (e) Plot of the image profile along the red line (as drawn
in Figure 1b) for each algorithm. (f )–(j) Same as (a)–(e) but for σ = 2.0mm, respectively. (k)–(o) Same as (a)–(e) but for σ = 5.0mm,
respectively.
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Figure 7. (a–d) Reconstructed images of the vasculature phantom for the BP, ITR, TH and TV protocols, respectively for finite-size detec-
tors with σ = 0.6mm and 12mm as the diameter of each transducer. (e) The variation of normalized pressure along the red line (as
drawn in Figure 1b) for the source and reconstructed images. (f–j) Same as (a)–(e) but for σ = 2.0mm, respectively. (k–o) Same as (a–e)
but for σ = 5.0mm, respectively.

Table 2. Comparison of the performancemetrics for the evaluation of the reconstruction techniques for different apodization conditions
(rows 1–8 for 6 mm transducer and rows 9–16 for 12mm transducer). The unit of SNR is dB.

Sensor diameter (6mm)

σ = 0.6mm σ = 2.0mm σ = 5.0mm

Metric BP MBP TH TV BP MBP TH TV BP MBP TH TV

ERN 36.11 31.31 26.07 24.38 36.38 28.34 24.70 20.03 36.32 28.53 25.08 21.22
PCC 0.53 0.62 0.76 0.84 0.50 0.65 0.78 0.88 0.49 0.64 0.77 0.88
SNR 15.00 20.25 21.89 42.74 18.59 26.40 20.77 55.59 19.21 24.92 21.38 53.45
CNR 1.04 1.27 1.73 1.91 1.03 1.40 1.87 2.28 1.00 1.38 1.83 2.26
SSIM 0.41 0.56 0.57 0.91 0.45 0.81 0.56 0.93 0.46 0.79 0.55 0.93

Sensor diameter (12mm)

σ = 0.6mm σ = 2.0mm σ = 5.0mm

Metric BP MBP TH TV BP MBP TH TV BP MBP TH TV

ERN 36.00 31.29 25.04 21.26 35.11 27.70 23.60 18.58 35.79 27.11 24.14 20.37
PCC 0.53 0.62 0.77 0.87 0.48 0.66 0.79 0.90 0.44 0.68 0.78 0.88
SNR 15.15 20.36 23.33 41.34 19.07 36.49 19.51 52.65 19.27 29.16 21.87 50.29
CNR 1.04 1.27 1.80 2.16 1.01 1.49 2.02 2.51 0.95 1.59 1.97 2.29
SSIM 0.42 0.56 0.58 0.92 0.49 0.85 0.58 0.93 0.48 0.82 0.59 0.93

to note that blur-free image reconstruction is possible
using the TH and TV protocols. The TV images are
even better (with respect to contrast) than those of the
TH method. This is consistent with Figures 6(e, j, o).
The same images for the 12mm transducers are given in
Figure 7.

Table 2 (rows 4–8) presents a quantitative compari-
son of the performance of the reconstruction algorithms
for the 6mm transducers. The corresponding numeri-
cal values of the figures of merit are included in Table 2
(rows 12–16) for the 12mm transducers. The image qual-
ity degrades (PCC decreases from 0.53 to 0.49) as the σ
increases from0.6 to 5mm in the case of the BP technique
(see row 5, columns 2 and 10, Table 2). Other parameters
exhibit small fluctuations. MBP works always better than

the conventional BP protocol for all apodization condi-
tions. For instance, CNR and SSIM can be found to be
approximately 38% and 71% higher for the MBP tech-
nique compared to the BP approach in the case of σ =
5.0mm (see rows 7 and 8, columns 10 and 11, Table 2).
The numerical values for the TH and TV procedures do
not differ significantly, though the apodization parame-
ter alters. PCC, CNR and SSIM can be seen to be more
than 0.75, 1.70, and 0.5, respectively for the TH scheme
for all cases (see rows 5, 7, and 8 and columns 4, 8, and 12,
Table 2). Those values for the TV method are 0.80, 1.90,
and 0.9, respectively (see rows 5, 7, and 8 and columns 5,
9, and 13, Table 2). The numerical values of the metrics
appear almost identical for the 12mm transducer with
respect to the 6mm sensor (rows 12–16, Table 2).
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5. Discussion and conclusion

In this work, we presented a robust method for deblur-
ring the PAT images. A blood vessel network was utilized
as a gray scale source image (absorption coefficient/initial
pressure was �= 0 for the black regions and 0 for the
white background). The image reconstruction was per-
formed using the BP, ITR, TH and TV techniques when
point detectors were used to record the PA signals. In the
case of finite size apodized transducers, MBP instead of
ITR was used along with the other reconstruction algo-
rithms. All the simulations were performed using the
k-Wave toolbox in theMATLAB environment. The addi-
tional packages like the regularization toolbox and TV
toolbox were also integrated with the MATLAB to carry
out the reconstructions for the TH and TV techniques,
respectively.

Effects of four factors (inducing blurring) typically
present in a PAT system were investigated. As stated ear-
lier, these factors were (i) finite width of the incident
laser pulse, (ii) finite bandwidth of the detectors, (iii)
acoustically absorbing and dispersive coupling medium
through which PA waves propagate and (iv) transduc-
ers with finite-size apertures with Gaussian sensitivity
profile. Only a single factor was studied at a time. We
systematically examined how the reconstructed images,
created by the reconstruction algorithms, would appear
in presence of each factor. After that, we evaluated
whether a reconstruction procedure could rectify the
limitation/limitations of the imaging systemand facilitate
distortion-free output image.

The BP techniques essentially assume that the detec-
tors are the ideal point detectors and subsequently, imple-
ment the delay and sum algorithm. Hence, it does not
have any internal mechanism to correct the distortions
induced by the imaging system. The same is also true
for the ITR algorithm. Therefore, it is expected that these
algorithms cannot overcome the limitation/limitations of
the imaging system while performing the image recon-
struction. In the case ofmodelmatrix approaches consid-
ered in this study, the model matrix was built by loading
the PA signals emitted by each grid point and recorded
at each detector location. Therefore, the factor/factors
responsible for image blurring was/were included within
the model matrix. After that, the image reconstruction
was accomplished through model matrix inversion. The
model matrix inversion can be thought of as a decon-
volution operation. It can be speculated that the system-
dependent parameters are cancelled out during this pro-
cedure and thus blur-free reconstructed images can be
obtained.

It may be emphasized here that this approach can eas-
ily be implemented in practice by constructing the A

matrix using the PA signal emitted by a point source (e.g.
black lead) and detected by the transducer which will be
used for scanning. This will serve as the reference signal.
Thereafter, Equation (19) or Equation (20) can be uti-
lized to estimate the PA signals for different grid points
and at different detector positions. This approachmay fail
to provide faithful image reconstruction for acoustically
inhomogeneous imaging regions (i.e. when the speed of
sound is different at different spatial locations). More-
over, in the future, it would be interesting to conduct a
similar studywith a numerical phantomcontainingmany
gray levels, which may help to develop further insights
into the problem.

In this work, for the first time as far as we know, the
systemmatrix was constructed for transducers with aper-
tures of finite size and nonuniform sensitivity profile.
This was possible because a finite sensor (a line segment
in the case of two dimensions) was modelled as a col-
lection of discrete points. The PA signals recorded by
those points were summed up, with Gaussian weights to
incorporate the apodization effect, to obtain the resul-
tant signal captured by that transducer. The Gaussian
apodization is often used in ultrasonic imaging to sup-
press the artefacts arising from the sidelobes and this
issue has been extensively studied in ultrasonic imag-
ing [40]. The system matrix was constructed utilizing
such signals. Nevertheless, these point sensors were con-
sidered omnidirectional and thus the effect of directiv-
ity of finite transducers was not incorporated in this
work.

In conclusion, a method involving the system matrix
approach is discussed to provide a blur-free PAT imag-
ing. The robustness of the method is established through
numerical simulations. Future work will include experi-
mental verification of the proposed method.

Acknowledgments

The authors would like to acknowledge BMIL, IIITA labora-
tory members for their continuous inputs; special thanks to
Mr. Avijit Paul for participating in many stimulating discus-
sions related to this work. The computational results reported
in this work were performed on the Central Computing Facil-
ity of IIITA, Allahabad. This work was supported by the ICMR,
India grant (# 56/2/2020-Hae/BMS).

Disclosure statement

The authors have no conflicts of interest to disclose.

Funding

This work was supported by the Indian Council of Medical
Research (ICMR), Govt. of India, India grant
(# 56/2/2020-Hae/BMS).



500 P. WARBAL AND R. K. SAHA

References

[1] Wang LV, Yao J. A practical guide to photoacoustic tomog-
raphy in the life sciences. Nat Meth. 2016;13(8):627–638.

[2] Na S, Russin JJ, Lin L, et al. Massively parallel functional
photoacoustic computed tomography of the human brain.
Nat Biomed Eng. 2021;1–9.

[3] Ron A, Deán-Ben XL, Gottschalk S, et al. Volumetric
optoacoustic imaging unveils high-resolution patterns of
acute and cyclic hypoxia in a murine model of breast
cancer. Cancer Res. 2019;79(18):4767–4775.

[4] Prakash J, Kalva SK, Pramanik M, et al. Binary photoa-
coustic tomography for improved vasculature imaging.
J Biomed Opt. 2021;26(8):086004.

[5] Huang S, Blutke A, Feuchtinger A, et al. Functional
multispectral optoacoustic tomography imaging of hep-
atic steatosis development in mice. EMBO Mol Med.
2021;13(9):e13490.

[6] Xu M, Wang LV. Universal back-projection algorithm
for photoacoustic computed tomography. Phys Rev E.
2005;71(1):016706.

[7] Treeby BE, Cox BT. k-wave: MATLAB toolbox for the
simulation and reconstruction of photoacoustic wave
fields. J Biomed Opt. 2010;15(2):021314.

[8] Burgholzer P, Matt GJ, Haltmeier M, et al. Exact
and approximative imaging methods for photoacoustic
tomography using an arbitrary detection surface. Phys
Rev E. 2007;75(4):046706.

[9] Deán-Ben XL, Ntziachristos V, Razansky D. Acceler-
ation of optoacoustic model-based 360 reconstruction
using angular image discretization. IEEETransMed Imag.
2012;31(5):1154–1162.

[10] Wang K, Su R, Oraevsky AA, et al. Investigation
of iterative image reconstruction in three-dimensional
optoacoustic tomography. Phys Med Biol. 2012;57(17):
5399–5423.

[11] Prakash R, Badal D, Paul A, et al. Photoacoustic signal
simulation using discrete particle approach and its appli-
cation in tomography. IEEE Trans Ultrason Ferroelectr
Freq Control. 2021;68(3):707–717.

[12] Paul A, Warbal P, Mukherjee A, et al. Exploring poly-
nomial based interpolation schemes for photoacoustic
tomographic image reconstruction. Biomed Phys Eng
Express. 2021; 8:015019.

[13] Wang Y, Xing D, Zeng Y, et al. Photoacoustic imag-
ing with deconvolution algorithm. Phys Med Biol.
2004;49(14):3117–3124.

[14] Warbal P, Prakash R, Pramanik M, et al. Wiener filter-
ing for deblurring of reconstructed images in photoa-
coustic tomography with finite size apodized transducers.
IEEE Region 10 Conference (TENCON); IEEE; 2019. p.
96–101.

[15] Rajesh NA, Pullagurla H, Pramanik M. Deconvolution-
based deblurring of reconstructed images in photoa-
coustic/thermoacoustic tomography. J Opt Soc Am A.
2013;30(10):1994–2001.

[16] La Riviere PJ, Zhang J, Anastasio MA. Image reconstruc-
tion in optoacoustic tomography for dispersive acoustic
media. Opt Lett. 2006;31(6):781–783.

[17] Deán-Ben XL, Razansky D, Ntziachristos V. The effects
of acoustic attenuation in optoacoustic signals. Phys Med
Biol. 2011;56(18):6129–6148.

[18] Treeby BE. Acoustic attenuation compensation in photoa-
coustic tomography using time-variant filtering. J Biomed
Opt. 2013;18(3):036008.

[19] Li M-L, Tseng Y-C, Cheng C-C. Model-based correction
of finite aperture effect in photoacoustic tomography. Opt
Express. 2010;18(25):26285–26292.

[20] Roitner H, Haltmeier M, Nuster R, et al. Deblurring algo-
rithms accounting for the finite detector size in photoa-
coustic tomography. J Biomed Opt. 2014;19(5):056011.

[21] Van de Sompel D, Sasportas LS, Jokerst JV, et al. Compar-
ison of deconvolution filters for photoacoustic tomogra-
phy. PLoS ONE. 2016;11(3):e0152597.

[22] Pramanik M. Improving tangential resolution with a
modified delay-and-sum reconstruction algorithm in
photoacoustic and thermoacoustic tomography. J Opt Soc
Am A. 2014;31(3):621–627.

[23] Warbal P, Pramanik M, Saha RK. Impact of sensor
apodization on the tangential resolution in photoacoustic
tomography. J Opt Soc Am A. 2019;36(2):245–252.

[24] Wang K, Ermilov SA, Su R, et al. An imaging model
incorporating ultrasonic transducer properties for three-
dimensional optoacoustic tomography. IEEE Trans Med
Imaging. 2010;30(2):203–214.

[25] Warbal P, Saha RK. In silico evaluation of the effect of
sensor directivity on photoacoustic tomography imaging.
Optik. 2022;252:168305. in press.

[26] Chowdhury KB, Prakash J, Karlas A, et al. A synthetic
total impulse response characterization method for cor-
rection of hand-held optoacoustic images. IEEE Trans
Med Imaging. 2020;39(10):3218–3230.

[27] Shang R, Archibald R, Gelb A, et al. Sparsity-based pho-
toacoustic image reconstruction with a linear array trans-
ducer and direct measurement of the forward model.
J Biomed Opt. 2018;24(3):031015.

[28] Huang C, Wang K, Nie L, et al. Full-wave iterative image
reconstruction in photoacoustic tomography with acous-
tically inhomogeneous media. IEEE Trans Med Imaging.
2013;32(6):1097–1110.

[29] Warbal P, Saha RK. Removal of blurring induced by band-
limited transducers and broad laser pulse in photoa-
coustic tomography. EuropeanConference onBiomedical
Optics; Optical Society of America; 2021. p. ES1C-3.

[30] Okawa S, Hirasawa T, Kushibiki T, et al. Numerical eval-
uation of linearized image reconstruction based on finite
element method for biomedical photoacoustic imaging.
Opt Rev. 2013;20(5):442–451.

[31] SheuYL, Li PC. Simulations of photoacousticwave propa-
gation using a finite-difference time-domainmethodwith
Berenger’s perfectly matched layers. J Opt Soc Am A.
2008;124(6):3471–3480.

[32] Waters KR, Mobley J, Miller JG. Causality-imposed
(Kramers–Kronig) relationships between attenuation and
dispersion. IEEETransUltrason Ferroelectr FreqControl.
2005;52(5):822–823.

[33] Kelly JF,McGough RJ,MeerschaertMM. Analytical time-
domain Green’s functions for power-law media. J Acoust
Soc Am. 2008;124(5):2861–2872.

[34] Warbal P, PramanikM, SahaRK.A robustmodified delay-
and-sum algorithm for photoacoustic tomography imag-
ing with apodized transducers. European Conference on
Biomedical Optics, Optical Society of America; 2019 Jun.
p. 11077_38.



JOURNAL OF MODERN OPTICS 501

[35] Prakash J, Raju AS, Shaw CB, et al. Basis pursuit deconvo-
lution for improving model-based reconstructed images
in photoacoustic tomography. Biomed Opt Express.
2014;5(5):1363–1377.

[36] Hansen PC. Regularization tools version 4.0 for Matlab
7.3. Numer Algorithms. 2007;46(2):189–194.

[37] Li C, Yin W, Jiang H, et al. An efficient augmented
Lagrangian method with applications to total varia-
tion minimization. Comput Optim Appl. 2013;56(3):
507–530.

[38] Song X, Pogue BW, Jiang S, et al. Automated region detec-
tion based on the contrast-to-noise ratio in near-infrared
tomography. Appl Opt. 2004;43(5):1053–1062.

[39] Wang Z, Bovik AC, SheikhHR, et al. Image quality assess-
ment: from error visibility to structural similarity. IEEE
Trans Image Process. 2004;13(4):600–612.

[40] Seo CH, Yen JT. Sidelobe suppression in ultrasound imag-
ing using dual apodization with cross-correlation. IEEE
Trans Ultrason Ferroelectr Freq Control. 2008;55(10):
2198–2210.


	1. Introduction
	2. Theoretical models
	2.1. Modelling of the PA wave propagation
	2.1.1. Wave propagation in a lossless medium
	2.1.2. Wave propagation in a lossy and dispersive medium

	2.2. Image reconstruction algorithms
	2.2.1. Analytical approaches
	2.2.2. System matrix approaches

	2.3. Quantitative assessment of the reconstruction schemes

	3. Simulation methodology
	3.1. Forward simulation
	3.2. Implementation of BP, MBP and ITR algorithms
	3.3. Building of system matrix
	3.4. Implementation of the TH and TV algorithms
	3.5. Analysis of the reconstructed images

	4. Numerical results
	4.1. PA signal estimation
	4.2. Variation of pulse width
	4.3. Variation of bandwidth
	4.4. Variation of medium attenuation
	4.5. Variation of sensor apodization

	5. Discussion and conclusion
	Acknowledgments
	Disclosure statement
	Funding
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [609.704 794.013]
>> setpagedevice


