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Photoacoustic tomographic (PAT) image reconstruction with apodized sensors is discussed. A Gaussian function
was used to model axisymmetric apodization of sensors, and its full width at half-maximum (FWHM) was varied
to investigate the role of apodization on the PAT image reconstruction. The well-known conventional delay-and-
sum (CDAS) algorithm and recently developed modified delay-and-sum (MDAS) algorithm were implemented to
generate reconstructed images. The performances of these algorithms were examined by comparing simulated
images formed by these methods and that of ideal point detectors. Simulations in two dimensions were conducted
using the k-Wave toolbox for three different phantoms. The results produced by the CDAS method are very close
to that of ideal point detectors when the FWHM of the Gaussian function is small. The MDAS algorithm for flat
sensors provides excellent results (comparable to that of point detectors) when the FWHM of the Gaussian profile

is large. This study elucidates how sensor apodization affects PAT image reconstruction.
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1. INTRODUCTION

A tomographic imaging technique has been developed over the
past two decades based on the photoacoustic (PA) effect [1-5].
When short pulses of a laser beam illuminate biological tissue,
it undergoes thermoelastic expansion, and acoustic waves
(known as PA waves) are generated. The PA signal is then ac-
quired by detectors placed around the tissue surface. The sensor
data are later used to map initial pressure rise or to reconstruct
an image of the PA source distribution. This is known as PA
tomography (PAT). PAT provides morphological information
of the illuminated area and is found to be useful for breast im-
aging [6,7], sentinel lymph node imaging [8,9], small animal
brain imaging [10,11], vasculature imaging [12], molecular
imaging [13—15], and to study tumor angiogenesis [16,17].
In PAT, image reconstruction can be accomplished using
analytical approaches such as back-projection or time reversal
methods. It can also be performed exploiting model-based
techniques. The back-projection method is simple and fast
but delivers qualitative information of the tissue region only.
On the other hand, more accurate quantitative information
can be obtained utilizing the model-based procedures, but they
are computationally expensive.

The scanning geometry in many PAT systems is chosen
to be circular, i.e., the detectors are placed at various angular
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positions on the circumference of the circle to record the PA
signals coming from the biological tissue [18]. A schematic dia-
gram of a typical PAT scanning geometry is shown Fig. 1(a).
These detectors are band-limited finite-aperture ultrasound
transducers. It has been analytically shown in detail that these
two factors related to the detector determine the resolutions of
a PAT system [19]. Bandwidth dictates both the axial and tan-
gential resolutions. Aperture size controls the tangential reso-
lution. The axial and tangential resolutions are defined in
Fig. 1(a). It has also been proved that the axial resolution re-
mains spatially invariant, whereas the tangential resolution is
space dependent. For example, tangential resolution for a given
system is highest at the scanning center and deteriorates radially.
In other words, the closer we go to the surface of the detector
from the scanning center, the worse the tangential resolution.
Improvement of the tangential resolution can be done in
two ways: either by reducing the transducer size so that it
can accept signals from wider angles or by placing the detectors
far away from the imaging region. The small-sized transducers
have weaker sensitivity due to high thermal noise, whereas the
other approach leads to a large scanning radius, which results in
poor signal-to-noise ratio. The use of focused transducers (high
numerical aperture) as virtual point detectors also improves tan-
gential resolution [20]. A negative acoustic lens attached to a
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planer transducer was also tried as a method to improve tan-
gential resolution [21]. Although the acoustic lens increases the
acceptance angle for the transducer, it also decreases its sensi-
tivity (material dependent). Moreover, air gaps can also be
formed between the lens and the transducer, leading to artifacts
in the reconstructed image. There is also a provision for an in-
built lens for a transducer (so there are no air gaps), but it would
be custom made and hence expensive. Attempts have also been
made to develop a method by modifying the reconstruction
algorithm in order to enhance tangential resolution [22,23].
In the conventional delay-and-sum (CDAS) algorithm, large-
aperture detectors are assumed as point detectors. The PA
signals recorded by the detectors (incident PA waves undergo
spatial averaging due to the large aperture) are back-projected
from their centers to form an image. The modified delay-and-
sum (MDAS) procedure involves the following steps: (i) it uni-
formly divides the PA signal detected by a transducer, (ii) it
distributes those signals into different parts of that transducer,
(iii) it executes the previous steps for each transducer, and (iv) it
performs back-projection to reconstruct an image. It has been
proved via simulation and experimental means that a more than
threefold improvement of the tangential resolution can be
achieved using the MDAS algorithm [22,23].

The aim of this work is to use simulations to study the per-
formance of these algorithms when signals are detected by apo-
dized transducers. Controlling the amplitude of normal velocity
across the aperture of a transducer is known as the apodization
[24,25]. It can be accomplished in many ways in the case of a
single element transducer, such as: (i) by using a tapered electric
field along the aperture, (ii) by dampening the beam on the face
of the aperture, (iii) by altering the structure or geometry of the
crystal, or (iv) by changing the phase in various regions of
the aperture [24]. It is used in ultrasound imaging to lower
the strengths of the side lobes and thus diminish artifacts to a
great extent. As mentioned above, Xu and Wang [19] obtained
analytical expressions of the point spread function as a function
of bandwidth of the detection system and finite size of the
recording aperture, assuming that the sensitivity of the detector
remained constant throughout the aperture. In the current
work, we investigate the effect of transducer apodization on
PAT imaging, which has not been studied so far to our knowl-
edge. Thus, the PA signals received by different parts of a detec-
tor were weighted by a Gaussian function and summed up to
evaluate the resultant signal, emulating how a single element
apodized ultrasound transducer would receive the PA signal.
This signal was used for image formation using the CDAS
and MDAS algorithms as shown in Figs. 1(b) and 1(c), respec-
tively. Axisymmetric Gaussian functions with different full
width at half-maximum (abbreviated as FWHM, and it is also
mentioned as simply “width” in the text) values were used to
generate various apodized conditions. Simulations in two di-
mensions were carried out in the k-Wave toolbox for three differ-
ent phantoms. The aperture size of the sensors was also varied. It
is shown that the CDAS algorithm with transducer apodization
provides a more than threefold improvement. The MDAS pro-
tocol is found to be effective when apodization is weak.

The organization of the paper is as follows. The basic theo-
retical framework for PAT image reconstruction is detailed in

Circular scanning geometry
@uitrasound detector

Conventional-delay-sum Modified-delay-sum

Fig. 1. (a) Scanning geometry showing the directions of axial and
tangential resolutions. (b) Conventional delay-and-sum algorithm for
a single transducer location. (c) Same as (b) but for the modified
delay-and-sum algorithm.

Section 2. This section also describes the numerical method
and reconstruction algorithms. Simulation results are elabo-
rately presented in Section 3. Various aspects of our findings
are discussed in Section 4. Section 4 also outlines the conclu-
sions of this study.

2. MATERIALS AND METHODS
A. Basic Equations

The mathematical framework for PAT imaging is given in de-
tail in previous publications [22,23]; however, relevant equa-
tions are presented here briefly for the sake of completeness.
The PA pressure p(r, #) at a position r and time ¢ developed
in an acoustically homogeneous medium due to the absorption
of electromagnetic radiation satisfies the following wave
equation [26]:

1 p(x, ) P OoH(r,1)

Vz 5 - 75 b
P -5 C, o

U]

where f is the isobaric thermal expansion coefficient, C,, is the
specific heat, v is the speed of sound, and H (r, ¢) is a function
that describes heating of the sample per unit time and volume.
In practice, a 6(¢) laser pulse is used to excite the sample,
and if A(r) is the spatial light energy absorption function,
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then H(r,z) can be decomposed as H(r,r) = A(r)o(z).
Equation (1) therefore becomes [1]

p(r, d
o L2250 atostn g

where p,(r) = I['(r)A(r) is the 1n1t1a1 pressure rise due to ab-
sorption of light. Here, I'(r) = ? is the Griineisen parameter.
The solution to Eq. (2) can be easily obtained in the frequency
domain using Green’s function approach. Therefore, by solving
this forward problem, one can estimate PA pressure at a field
point if the spatial profile of the initial pressure rise of the
illuminated region is known.

In PAT, we essentially deal with an inverse problem. This
means that one attempts to find initial pressure distribution
20(r) or absorption distribution A(r) inside the imaging region
from a set of data p(ry, ) measured at ry. The exact analytical
solutions for A(r) utilizing Green’s function approach can be
found in the literature for planner, cylindrical, and spherical
detection geometries [19]. The solutions are achieved by ex-
panding Green’s function in terms of appropriate functions
for the corresponding geometries [19].
Fourier domain reconstruction formulas are not straightfor-
ward to calculate because they involve multiple integration
or series summations. The same group later proposed a simpli-
fied time domain reconstruction formula known as the univer-

sal back-projection algorithm, expressed as [27]
o= [ b =" 00 @
Qll v

However, these

where

0
blx, £) = 2p(xy, 1) = 2 o plxo, ) (4)
is the back-projection term and
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is the solid angle subtended by the detection element &S at the
reconstruction point r; ny is the unit vector normal to the mea-
surement surface and € is the total solid angle subtended by
the recording area at r. It is well known that for 2D, Q) = 27
and for 3D, Q, = 4r.

The PA signals generated by an absorbing region are cap-
tured by detectors with finite aperture size placed at different
angular positions in a typical PAT system. Therefore, output
signal for a receiver can be written as

P t) = / (e W (e e, 6)

where W (r}) is the weighting factor. Equation (6) states that in
general different parts of a large-aperture transducer may have
different sensitivities, and thus the resultant signal has to be
calculated by taking the weighted sum of impinging pressure
waves. In this study, we assume that the sensitivity of the de-
tector varies in a Gaussian manner with respect to the center,
and therefore Eq. (6) reduces to

I -2
p'(xg,2) = /p(ro,t)e 7 d’r), (7)
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where o is the standard deviation of the Gaussian apodization
function and r. is the center of the transducer [24,25,28].
Equation (7) has been computed in this work to evaluate
the resultant PA signal for large-aperture detector, and then
the back-projection term has been evaluated.

B. Numerical Simulation

In this study, we considered three different numerical phan-
toms. The first phantom consisted of five point sources. The
point sources were placed axially at 0, 2.4, 4.8, 7.2, and
9.6 mm, respectively, from the center of the image as shown
in Fig. 2(a). This phantom allowed us to study how axial
and tangential resolutions would depend upon sensor aperture
size and apodization in PAT imaging. The second phantom was
a variant of the Derenzo phantom, which contained a series of
filled circles with increasing diameter [see Fig. 2(b)]. This
would help to examine the effect of the size of the PA source
on image reconstruction. It may be noted that blood happens
to be the ideal medium for PA imaging because it contains he-
moglobin, which acts as endogenous chromophore. Therefore,
we designed a phantom that mimicked a blood vessel network
as displayed in Fig. 2(c).

Each phantom was included as a binary image (strength is
equal to 1 inside the source and 0 outside) within the numerical
code to simulate the PA signals using the k-Wave toolbox in
MATLAB. The corresponding computational setup is pre-
sented in Fig. 2(d). The computational region was discretized
into 341 x 341 grid points with a resolution of 0.1 mm.

Vasculature

o

M4mm —- -

Five points Derenzo

Ultrasound Detector

Region of
Imaging
(20x20 mm)

(d)

Perfectly Matched Layer (PML)

Fig. 2. (a) Five point sources phantom. (b) Derenzo phantom.
(¢) Vasculature phantom. Initial pressure for the white region is equal
to 0, and for the black region it is considered as 1. (d) Illustration of the
simulation geometry.
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An absorbing layer of 2 mm width was placed at each boundary
as shown in the figure. The imaging region of size 201 x 201
grid points was placed at the center of the computational do-
main. The density and speed of sound throughout the medium
were chosen as 1000 kg/m® and 1500 m/s, respectively. The
medium was assumed to be acoustically lossless. The imaging
region was circularly surrounded by a number of detectors with
15 mm as the scanning radius to capture the PA signals. In this
study, 200 detectors were positioned uniformly, covering an
angle 0—27. Flat detectors with 6 mm and 12 mm as the diam-
eters were taken to investigate how aperture size and apodiza-
tion would jointly affect the PAT resolution. The Gaussian
function with widths 6 = 0.6,2.0, and 5.0 mm were used
to model different apodization conditions. These numerical
values were chosen phenomenologically. It might be noted that
the detectors were basically line sensors, as the simulations were
conducted in 2D. A finite size detector was broken into a num-
ber of points (51 points for 6 mm and 101 points for 12 mm).
The nearest grid points for such points were determined, and
time-dependent pressure fields were stored at those points for a
sensor with 2.25 MHz as the center frequency and 70% band-
width. A 40 dB noise level was also added. Sampling interval
was 20 ns, and the PA pressure values at 1608 time points were
saved for each sensor point.

C. Reconstruction Algorithms

As stated eatlier, a large detector was broken into a number of
points, and the PA signal at each point location was computed by
running the forward model using the k-Wave toolbox. Then a
Gaussian apodization function was used and generated a result-
ant PA signal from those signals [see Eq. (7)]. This step was
repeated for all transducer positions. After that, the back-
projection term was calculated for each detector [see Eq. (4)].
The second term in Eq. (4) was omitted for simplicity during
computation. The resultant signals for all transducer locations
were then back-projected and added for every pixel to generate
a reconstructed image. This is the CDAS algorithm incorporat-
ing transducer apodization. It might be mentioned here that
each detector was a part of a large detector and also a point sensor.
Therefore, we did not include any factor for 4Q while calcu-
lating Eq. (3). The width of the Gaussian function was also var-
ied to examine its effect on image reconstruction. In the MDAS
algorithm, the resultant PA signal was redistributed equally into
the same number of points, and after that, the CDAS method
was followed. This means that no Gaussian weight was used
while calculating signals for each of the point locations of a
large detector. The algorithms are schematically described in
Figs. 1(b) and 1(c), respectively. MATLAB codes were written
to implement the back-projection algorithms for this work. All
the simulations were executed in a personal computer with
64 bit OS, i5 processor, 3.50 GHz clock speed, and 12 GB
RAM. Approximate run time was 2 min for each phantom.
To quantitatively determine the performance of the
reconstruction algorithms under different apodization condi-
tions, we have calculated the Pearson correlation coefficient

(PCC), which is defined as
COV(x, x,)

P =,
ce STD(x)STD(x,)

@)

where x and x, are the nominal and reconstructed initial pres-
sure distributions, respectively. Here, STD indicates standard
deviation and COV denotes covariance. The PCC’s numerical
value varies from -1 to 1. The higher the value of the PCC, the

better the reconstruction.

3. SIMULATION RESULTS

Figure 3(a) displays the reconstructed image for the first phan-
tom using 200 ideal point detectors uniformly located between
0 and 27. The image is normalized by its maximum pixel value.
The color bar shows the corresponding grayscale values. It can
be seen that the point sources are well reproduced. However,
each reconstructed point transforms into a blurred circle,
which was also observed previously [22]. This distortion is ex-
pected because we have considered band-limited detectors.
Enlarged images of the reconstructed points are presented in
Figs. 3(al)-3(a5), respectively, for better visualization of
minute changes. The size and shape of the blobs in all these
figures are identical. This confirms that axial and tangential
resolutions in a reconstructed PAT image do not vary spatially
when point detectors are used to record the signals.

Normalized PAT images generated using the CDAS algo-
rithm are shown in Figs. 3(b)-3(d) for a flat sensor with
12 mm as the diameter and under different apodization condi-
tions. In these cases, PA data were also collected at 200 angular
locations. It is noted that the reconstruction is perfect [like in
Fig. 3(al)] when the source is situated at the scanning center.
Nevertheless, a blob transforms into a thick arch for a point
source situated away from the center. Further, arch length in-
creases as the radial distance of the source from the center in-
creases. The rate of increase of arch length is minimum for
o = 0.6 mm [see Fig. 3(b)]. It grows as the apodization effect
decreases or ¢ increases and reaches to its maximum for ¢ =
5.0 mm [see Fig. 3(d)]. The simulated images for the MDAS
technique are presented in Figs. 3(e)—3(g). Interestingly, the
completely opposite trend compared to Figs. 3(b)-3(g) can
be observed. Figure 3(e) illustrates that the MDAS algorithm
cannot recover initial pressure values when apodization is strong
[i.e., 0 = 0.6 mm]. However, it provides great improvement
when the width of the Gaussian apodization function is large
[Figs. 3(f)-3(g)]. The arch lengths for the farthest point source
have been reduced significantly [see Figs. 3(f5) and 3(g5)] in
comparison to Fig. 3(e5). The reconstructed images for
6 mm diameter sensor exhibit similar trends, and that is why
those figures have not been included here.

Quantitative values of the tangential resolution are further
plotted in Fig. 4 for different recording configurations. The same
plot for a point detector is also presented in each figure for ready
reference. It is evident from this figure that the tangential reso-
lution deteriorates axially for all conditions. However, for the
CDAS algorithm, it is improved approximately by a factor of
2 for the 6 mm case when ¢ varied from 5.0 to 0.6 mm for
the farthest point source as shown in Fig. 4(a). Under the same
conditions, improvement can be found to be nearly 3.5 times for
the 12 mm case [see Fig. 4(c)]. The MDAS method demon-
strates the completely reversed trend, as stated earlier. The en-
hancements of the tangential resolution for this algorithm are
computed to be 1.3 and 3 times for those detectors, respectively,
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Fig. 3.

(a) Reconstructed image of point sources when 200 ideal point detectors were used to collect the PA signals. A color bar is attached with

the image to display the numerical values for graylevels. (al)—(a5) Magnified images of those point sources. (b)—(d) Reconstructed images using the
CDAS algorithm for the same phantom with 12 mm diameter sensor (flat) and 6 = 0.6, 2.0, and 5.0 mm, respectively. The PA signals were captured
from 200 angular positions. The corresponding zoomed images are also shown. (e)—(g) Similar images formed employing the MDAS algorithm for

the same apodization conditions.

when o is altered from 0.6 to 5.0 mm for the same source posi-
tion [see Figs. 4(b) and 4(c)].

Normalized reconstructed images of the Derenzo and vas-
culature phantoms are shown in Figs. 5 and 6, respectively,
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under certain apodization conditions. Accurate reconstruction
is possible using point detectors as shown in Fig. 5(a). It may be
noted that each large circle appears like a ring. This may be
attributed to the fact that we do not have low-frequency
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Fig. 4. Dlots of tangential resolution as a function of distance of the source from the imaging center for flat sensors at different apodization
conditions; (a) and (b) for CDAS and MDAS algorithms, respectively, for a 6 mm sensor. (c) and (d) Same as (a) and (b), respectively, but

for a 12 mm sensor. PD means ideal point detector.
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Derenzo

-0.5

Fig.5. (a) Reconstructed image of Derenzo phantom using ideal point detectors. (b)—(d) Reconstructed images generated by the CDAS algorithm
for a 12 mm sensor (flat) with ¢ = 0.6,2.0, and 5.0 mm, respectively. (e)—(g) Same as (b)—(d), respectively, but for the MDAS algorithm.

components as we have used transducers with finite bandwidth.
The conventional algorithm works best when ¢ is small. For
instance, circular objects far away from the scanning center
have been faithfully reconstructed [see Fig. 5(b)]. However, this
method performs poorly when ¢ becomes large [see Fig. 5(d)].
On the contrary, the modified technique produces its best

CDAS

Vasculature

quality images for weak apodization. For example, it can be seen
from Fig. 5(g) that circular shapes are almost exactly recovered,
even for the distant objects. Further, the quality of the recon-
structed image degrades as ¢ decreases. Similar observations can
be made from Fig. 6. Numerical values of the Pearson correlation
coefficient are provided in Table 1 to assess the performance of

MDAS

Fig. 6. (a) Reconstructed image of vasculature phantom using ideal point detectors. (b)—(d) Reconstructed images are created by the CDAS
algorithm for a 12 mm sensor (flat) with 6 = 0.6, 2.0, and 5.0 mm, respectively. (e)—(g) Same as (b)—(d), respectively, but for the MDAS algorithm.
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Table 1. Comparison between Actual and
Reconstructed Images Using the Pearson Correlation
Coefficient for Flat Sensors?

Five Points Derenzo Vasculature
Aperture
Diameter ¢ Values CDAS MDAS CDAS MDAS CDAS MDAS
PD 0.29 0.29 0.61 061 0.62 0.62

0.6 mm 026 020 055 045 059 0.58
6 mm 20 mm 0.20 023 040 049 041 0.59
50 mm 0.19 023 038 049 038 0.58

0.6 mm 026 0.19 055 039 059 051
20 mm 0.19 027 040 0.61 041 0.72
5.0 mm 0.17 028 0.36 0.69 035 0.74

12 mm

“Here, PD indicates point detector.

these algorithms. It is clear from Table 1 that the CDAS pro-
cedure can reproduce initial pressure distribution well when
the width of the Gaussian function is narrow; nevertheless,

the accuracy of the MDAS algorithm improves with increasing
width.

4. DISCUSSION AND CONCLUSIONS

Single element transducers with finite aperture size have been
almost exclusively used in PAT imaging works. This is because
such transducers are easily available in the market and provide
good signal-to-noise ratio. However, the PA waves impinging
on the surface of a large detector become spatially averaged,
and thus the high-frequency components are filtered out. As
a result, reconstructed images become blurred. In this simula-
tion study, we used apodized transducers. A Gaussian function
was used to model transducer apodization, and its width was
varied to examine the effect of apodization on PAT imaging.
The PA signals recorded by apodized sensors were utilized for
image reconstruction. A large detector with small ¢ (i.e., the
central part of the sensor would be most sensitive and the re-
gion away from the center would be less sensitive) effectively
acted like a point detector and hence provided fairly good
PAT images.

The CDAS algorithm was applied for image reconstruction.
It is a trivial and fast method. It was found that this method was
able to recover initial pressure very close to that of ideal point
detectors when the width of the Gaussian function was narrow
(6 = 0.6 mm). An approximately 3.5-fold enhancement of the
tangential resolution has been computed for a 12 mm detector
[see Fig. 3(b5) with respect to Figs. 3(d5) and 4(c)]. Another
simple protocol called the MDAS algorithm was also employed
in this study for image formation. The major advantage of this
method is that it can be implemented at the software level. This
study also shows that 3 times improvement of the tangential
resolution is possible by this algorithm for flat sensors with
12 mm diameter with large ¢ [see Fig. 3(g5) with respect to
Figs. 3(e5) and 4(d)]. These values are consistent with the pre-
vious simulation and experimental findings [22,23]. This algo-
rithm redistributed the PA signal (captured by a large detector)
equally among many small segments lying on the surface of
the detector. This step introduced small phase differences be-
tween signals (coming from different detector segments) while
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meeting at a pixel location, and the resultant signal (due to
interference) might have mimicked the original emitted signal
in a better manner than that of the CDAS. Consequently,
improved reconstruction was achieved for large o for which spa-
tial averaging was significant. However, spatial averaging was
less for small o, and therefore reconstruction was poor. The
MDAS algorithm took a longer time to execute (280 s) than
the CDAS algorithm (&1 s) because more elements were taken
into account during reconstruction using back-projection. For
example, 200 angular positions were considered in the first
algorithm, but it was 200 x 101 in the second algorithm when
a sensor was divided into 101 elements.

It is important to note that the resultant PA signal measured
by a detector in this work was uniformly distributed at the
point locations on the surface of the detector in the MDAS
procedure, and reconstruction was performed accordingly. In
addition, we also used the Gaussian weighting coefficients
while calculating time series pressure data associated with those
point locations and studied how it would affect image
reconstruction. The simulation results (not shown here) reveal
that if this procedure is adapted, then the MDAS algorithm
provides results comparable to that of the CDAS, even in
the case of strong apodization. The computed PCC values
for both the algorithms become comparable for all phantoms
at 6 = 0.6 mm. Therefore, the MDAS algorithm in both the
cases (strong and weak apodizations) works faithfully and
proves to be a robust algorithm if the Gaussian weighting is
incorporated in both directions (signal acquisition and back-
projection) for apodized detectors.

The Gaussian apodization has been extensively used in ul-
trasound imaging, since it can suppress side lobes, removing
artifacts substantially [24,25,28]. A similar operation may be
carried out in PAT to reduce image artifacts. It may be empha-
sized here that implementation of Gaussian apodization for sin-
gle element transducers is in general challenging because it has
to be performed during transducer construction. It may also be
speculated that the sensitivity of the transducer may be reduced
greatly (particularly when the FWHM of the Gaussian function
is small) due to apodization, which will limit its use in practice.
It may be relatively simple for array transducers because it may
be implemented at the software level if radio frequency signals
are accessible for different channels, and improved image for-
mation may be possible. Effort has been made recently in this
direction as well [29]. Therefore, in the future, we aspire to
design further simulation and experimental studies to verify
our findings.

Further, both the CDAS and MDAS methods essentially
employ the back-projection algorithm to reconstruct an image
of the initial pressure distribution. The back-projection method
is an analytical approach and is computationally efficient
but lacks the ability to facilitate quantitative information of
the imaging region as discussed earlier. Therefore, efforts
may be directed in the future to implement model-based
reconstruction algorithms to better estimate the initial pressure
rise [30-32]. These techniques are in general computationally
expensive because they deal with a large matrix known as the
system matrix, which includes properties of the medium, wave
propagation, and detectors. They work iteratively and obtain
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the best solution via implementing the Tikhonov regularization
scheme.

In conclusion, the effect of the Gaussian apodization of an
ultrasound detector on PAT image reconstruction has been
studied. Single element flat transducers were considered, and
simulations were conducted using the k-Wave toolbox. Three
different phantoms, namely, point sources, Derenzo, and vas-
culature were used in this study. Extensively used CDAS and
recently developed MDAS protocols were implemented for the
PAT image reconstruction, and those results were compared
with those of the ideal point detectors. It is found that the
CDAS algorithm provides results very close to those of the ideal
point detectors if the width of the Gaussian function is narrow.
The MDAS method facilitates excellent reconstruction when
the transducer surface is flat and the width of the Gaussian
function is wide. Therefore, the CDAS technique may be
preferred for flat sensors in practice if the apodization is strong,
and the MDAS algorithm may be applied if apodization

is weak.

Acknowledgment. The authors thank Anuj Kaushik and

Deepak Sonker for stimulating discussion.

REFERENCES

1. L. V. Wang, Photoacoustic Imaging and Spectroscopy (CRC Press,
2009), Chap. 4, pp. 37-46.

2. L. Lin, P. Hu, J. Shi, C. M. Appleton, K. Maslov, L. Li, R. Zhang, and
L. V. Wang, “Single-breath-hold photoacoustic computed tomography
of the breast,” Nat. Commun. 9, 2352 (2018).

3. L. Li, L. Zhu, C. Ma, L. Lin, J. Yao, L. Wang, K. Maslov, R. Zhang, W.
Chen, J. Shi, and L. V. Wang, “Single-impulse panoramic photoacous-
tic computed tomography of small-animal whole-body dynamics at
high spatiotemporal resolution,” Nat. Biomed. Eng. 1, 0071 (2017).

4. P. K. Upputuri and M. Pramanik, “Recent advances toward preclinical
and clinical translation of photoacoustic tomography: a review,”
J. Biomed. Opt. 22, 041006 (2017).

5. L. V. Wang and J. Yao, “A practical guide to photoacoustic tomogra-
phy in the life sciences,” Nat. Methods 13, 627-638 (2016).

6. E. Fakhrejahani, M. Torii, T. Kitai, S. Kanao, Y. Asao, Y. Hashizume,
Y. Mikami, I. Yamaga, M. Kataoka, T. Sugie, M. Takada, H. Haga, K.
Togashi, T. Shiina, and M. Toi, “Clinical report on the first prototype of
a photoacoustic tomography system with dual illumination for breast
cancer imaging,” PloS One 10, e0139113 (2015).

7. 1. Yamaga, N. Kawaguchi-Sakita, Y. Asao, Y. Matsumoto, A.
Yoshikawa, T. Fukui, M. Takada, M. Kataoka, M. Kawashima, E.
Fakhrejahani, S. Kanao, Y. Nakayama, M. Tokiwa, M. Torii, T.
Yagi, T. Sakurai, H. Haga, K. Togashi, T. Shiina, and M. Toi,
“Vascular branching point counts using photoacoustic imaging in
the superficial layer of the breast: a potential biomarker for breast
cancer,” Photoacoustics 11, 6-13 (2018).

8. K. Sivasubramanian, V. Periyasamy, and M. Pramanik, “Non-invasive
sentinel lymph node mapping and needle guidance using clinical
handheld photoacoustic imaging system in small animal,” J.
Biophoton. 11, e201700061 (2018).

9. H. Kim and J. H. Chang, “Multimodal photoacoustic imaging as a tool
for sentinel lymph node identification and biopsy guidance,” Biomed.
Eng. Lett. 8, 183-191 (2018).

10. J. Tang, J. E. Coleman, X. Dai, and H. Jiang, “Wearable 3-D photo-
acoustic tomography for functional brain imaging in behaving rats,”
Sci. Rep. 6, 25470 (2016).

Research Article

11. P. K. Upputuri and M. Pramanik, “Dynamic in vivo imaging of small
animal brain using pulsed laser diode-based photoacoustic tomogra-
phy system,” J. Biomed. Opt. 22, 1-4 (2017).

12. K. Jansen, G. van Sofest, and A. F. W. van der Steen, “Intravascular
photoaocustic imaging: a new tool for vulnerable plaque identifica-
tion,” Ultrasound Med. Biol. 40, 1037-1048 (2014).

13. V. Ntziachristos, “Going deeper than microscopy: the optical imaging
frontier in biology,” Nat. Methods 7, 603-614 (2010).

14. J. Weber, P. C. Beard, and S. E. Bohndiek, “Contrast agents for
molecular photoacoustic imaging,” Nat. Methods 13, 639-650 (2016).

15. Y. Liu, L. Nie, and X. Chen, “Photoacoustic molecular imaging: from
multiscale biomedical applications towards early-stage theranostics,”
Trends Biotechnol. 34, 420-433 (2016).

16. K. Okumura, K. Yoshida, K. Yoshioka, S. Aki, N. Yoneda, D. Inoue,
A. Kitao, T. Ogi, K. Kozaka, T. Minami, W. Koda, S. Kobayashi, Y.
Takuwa, and T. Gabata, “Photoacoustic imaging of tumour vascular
permeability with indocyanine green in a mouse model,” Eur. Radiol.
Exp. 2, 5 (2018).

17. S. Nandy, A. Mostafa, I. S. Hagemann, M. A. Powell, E. Amidi, K.
Robinson, D. G. Mutch, C. Siegel, and Q. Zhu, “Evaluation of ovarian
cancer: initial application of coregistered photoacoustic tomography
and US,” Radiology 289, 740-747 (2018).

18. S. K. Kalva, P. K. Upputuri, and M. Pramanik, “High-speed, low-cost,
pulsed-laser-diode-based second-generation desktop photoacoustic
tomography system,” Opt. Lett. 44, 81-84 (2019).

19. M. Xu and L. V. Wang, “Analytic explanation of spatial resolution
related to bandwidth and detector aperture size in thermoacoustic
or photoacoustic reconstruction,” Phys. Rev. E 67, 056605 (2003).

20. C.LiandL. V. Wang, “High-numerical-aperture-based virtual point de-
tectors for photoacoustic tomography,” Appl. Phys. Lett. 93, 033902
(2008).

21. M. Pramanik, G. Ku, and L. V. Wang, “Tangential resolution improve-
ment in thermoacoustic and photoacoustic tomography using a neg-
ative lens,” J. Biomed. Opt. 14, 024028 (2009).

22. M. Pramanik, “Improving tangential resolution with a modified delay-
and-sum reconstruction algorithm in photoacoustic and thermoacous-
tic tomography,” J. Opt. Soc. Am. A 31, 621-627 (2014).

23. S. K. Kalva and M. Pramanik, “Experimental validation of tangential
resolution improvement in photoacoustic tomography using modified
delay-and-sum reconstruction algorithm,” J. Biomed. Opt. 21, 086011
(2016).

24. T. L. Szabo, Diagnostic Ultrasound Imaging: Inside Out (Academic,
2004), Chap. 6, pp. 137-170.

25. R. S. C. Cobbold, Foundations of Biomedical Ultrasound (Oxford
University, 2007), Chap. 3, pp. 135-226.

26. G. J. Diebold, T. Sun, and M. I. Khan, “Photoacoustic monopole
radiation in one, two and three dimensions,” Phys. Rev. Lett. 67,
3384-3387 (1991).

27. M. Xu and L. V. Wang, “Universal back-projection algorithm for photo-
acoustic computed tomography,” Phys. Rev. E 71, 016706 (2005).

28. R. Zemp and M. F. Insana, “Imaging with unfocused regions of
focused ultrasound beams,” J. Acoust. Soc. Am. 121, 1491-1498
(2007).

29. J. Xiao, X. Luo, K. Peng, and B. Wang, “Improved back-projection
method for circular-scanning-based photoacoustic tomography with
improved tangential resolution,” Appl. Opt. 56, 8983-8990 (2017).

30. X. L. Dean-Ben, V. Ntziachristos, and D. Razansky, “Acceleration of
optoacoustic model-based reconstruction using angular image discre-
tization,” IEEE Trans. Med. Imaging 31, 1154-1162 (2012).

31. K. Wang, R. Su, A. A. Oraevsky, and M. A. Anastasio, “Investigation
of iterative image reconstruction in three-dimensional optoacoustic
tomography,” Phys. Med. Biol. 57, 5399-5423 (2012).

32. C. B. Shaw, J. Prakash, M. Pramanik, and P. K. Yalavarthy, “Least
squares QR-based decomposition provides an efficient way of
computing optimal regularization parameter in photoacoustic tomog-
raphy,” J. Biomed. Opt. 18, 080501 (2013).


https://doi.org/10.1038/s41467-018-04576-z
https://doi.org/10.1038/s41551-017-0071
https://doi.org/10.1117/1.JBO.22.4.041006
https://doi.org/10.1038/nmeth.3925
https://doi.org/10.1371/journal.pone.0139113
https://doi.org/10.1016/j.pacs.2018.06.002
https://doi.org/10.1002/jbio.201700061
https://doi.org/10.1002/jbio.201700061
https://doi.org/10.1007/s13534-018-0068-1
https://doi.org/10.1007/s13534-018-0068-1
https://doi.org/10.1038/srep25470
https://doi.org/10.1117/1.JBO.22.9.090501
https://doi.org/10.1016/j.ultrasmedbio.2014.01.008
https://doi.org/10.1038/nmeth.1483
https://doi.org/10.1038/nmeth.3929
https://doi.org/10.1016/j.tibtech.2016.02.001
https://doi.org/10.1186/s41747-018-0036-7
https://doi.org/10.1186/s41747-018-0036-7
https://doi.org/10.1148/radiol.2018180666
https://doi.org/10.1364/OL.44.000081
https://doi.org/10.1103/PhysRevE.67.056605
https://doi.org/10.1063/1.2963365
https://doi.org/10.1063/1.2963365
https://doi.org/10.1117/1.3103778
https://doi.org/10.1364/JOSAA.31.000621
https://doi.org/10.1117/1.JBO.21.8.086011
https://doi.org/10.1117/1.JBO.21.8.086011
https://doi.org/10.1103/PhysRevLett.67.3384
https://doi.org/10.1103/PhysRevLett.67.3384
https://doi.org/10.1103/PhysRevE.71.016706
https://doi.org/10.1121/1.2434247
https://doi.org/10.1121/1.2434247
https://doi.org/10.1364/AO.56.008983
https://doi.org/10.1109/TMI.2012.2187460
https://doi.org/10.1088/0031-9155/57/17/5399
https://doi.org/10.1117/1.JBO.18.8.080501

