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Summary

A new approximate formula for scattering amplitude of a plane acoustic wave by a sphere is presented. It is
based on a similar formula introduced long ago by Hart and Montroll in the context of scattering of light by
a sphere. The scattering amplitude is shown to consist of two terms. The first term is related to the scattering

amplitude in the modified Born approximation, a variant of the well known Born approximation. The second term
constitutes a correction which is of the order of impedance mismatch between the scatterer and the surrounding
medium. Numerical comparisons of this formula with exact results have been performed. It is shown that the
new approximation betters the modified Born approximation and other variants of the Born approximation as the
weak scatterer condition for the validity of Born type approximations is relaxed.

PACS no. 43.20.Fn

1. Introduction

Approximation methods are known to play an important
role in the analysis of acoustic scattering. This is because
(1) exact solutions are not always possible and (ii) approx-
imate solutions are simple and can provide deeper phys-
ical insight into the scattering processes. In many cases,
these lead to analytic relations involving particle proper-
ties and the quantity to be observed such as scattered inten-
sity or attenuation etc. Therefore, it is not surprising that
a number of approximate methods have been developed
over the years. Some of these, valid for weak scatterers, are
Born approximation [1], long wavelength approximation
[1]. Rytov approximation [2] and eikonal approximation
[3]. The Born approximation (BA) and long wavelength
approximation are applicable to scatterers of sizes small
or comparable to wavelength of incident wave. For larger
obstacles, the Rytov and the eikonal approximations can
be employed.

Many attempts have been made in the past to design
formulas that better BA results. While variants such as
distorted wave Born approximation (DWBA) [4, 5] and
the modified Born approximation (MBA) [3] have been
devised to improve scattering pattern predictions, at least
one attempt has also been made to correct the scattering
amplitude by introducing a phase term in DWBA [6] for
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the purpose of determining extinction using forward scat-
tering theorem. This, of course, is inconsequential in scat-
lering pattern computations and will be mentioned only for
the sake of completeness in discussions in this paper. As
for validity domains of these modified variants, all three
have the same validity domain theoretically and hence can
be looked upon as belonging to the same class.

In this paper a new approximate formula is introduced
for scattering of acoustic plane waves by a sphere. This has
been done by drawing a parallel between scalar light scat-
tering and acoustic wave scattering. In contrast to other
variants of BA, such as MBA and DWBA, this approxi-
mation goes a step further. It takes higher order correc-
tions into account explicitly. The first term in this for-
mula is related to MBA by a multiplicative factor which
depends on size parameter of scatterer and velocity and
impedance mismatch between the scatterer and the sur-
rounding medium. This multiplicative factor could be ap-
proximated to unity for soft scatterers. The second term
is the correction which is expected to broaden the valid-
ity of MBA to higher impedance mismatch between scat-
terer and the surrounding medium. The original approxi-
mation scheme, in the context of optics, is due to Hart and
Montroll [7] and hence has been referred to as the Hart
and Montroll approximation (HMA). We continue to refer
analogous approximation in acoustics too as HMA.

This paper is organized as follows. To begin with, rel-
evant formulas in BA, MBA and DWBA have been intro-
duced in section 2. The development of HMA is presented
in section 3. Numerical comparison of HMA with exact
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results are displayed in section 4. Finally, we conclude by
summarizing our results in section 5.

2. Scattering by a sphere in the Born ap-
proximation and its variants

As is well known, the scattering amplitude in BA for an
obstacle of arbitrary shape can be written as [1]

k2 T :
Bl ky) = EJ (e + Ky, )e & T dy, (1)
v

where k; and k, are respectively incident and scattered
wave vectors, y, = (k| — k)/k and y, = (p1 — p)/p; are
respectively the normalized mismatch of compressibility
and density. The notations x|, p, are for obstacle and «, p
are for the surrounding medium. The integration is over
the volume v of the scatterer. The most crucial assump-
tion in derivation of (1) is that the unknown field inside
the scatterer can be taken to be the same as incident field
e®r The integration in (1) can be performed analytically
for a homogeneous sphere and one arrives at the following
expression for the scattering amplitude [1],

i1 (2kasin(6/2))
Dy (k, 8 :kzz[,\f 9] JI— 2
bl 8) = K |1 7,080 | | = (879 =
where |k;| = [k;| = k, @ is the radius of the spherical

obstacle and j; is the spherical Bessel function of first or-
der. The subscript ba indicates Born approximation. Math-
ematically, the conditions for the validity of BA can be ex-
pressed as

lrel <1yl < 1, (3)

and

kalyl <1  kaly,| < 1. (4)

The inequalities (4) imply that BA can be valid even for
particles large compared to wavelength of the incident
wave provided the interaction strength (kaly,|, kaly,|) is
still small. A modification over the BA was proposed by
Chu er al. [4], Stanton ef al. [5] and Chu and Ye [6].
The modified approximation has been refereed to as the
DWBA. In DWBA the field inside the scatterer is assumed
to have the same functional form as in BA but replaces k;
in the phase by k,, representing a distorted wave. With the
corresponding modification in the Green’s function, scat-
tering amplitude in the DWBA takes the form

k2 - .
apa ki, be) = 7+ J (Pre +kiksy, )e ™M Tdy,  (5)
T v
where h = ¢ /e is sound speed contrast and |k,| = |k;| =
k /h. For a sphere, integration in (5) can be performed. The
result is [6]

Dypalk, 0) = kia’ [thK + yf,cosf)]

) [jl (2kya sin(G/Z))}

2kiasin(0/2) (6)

The only major difference between @y, and D, is that
the wave number k's in large square bracket in (2) are re-
placed by ki's . Although k; ~ k for weak scattering, a
slight change in k to k; in the argument of the spherical
Bessel function has been noted [6] to gives rise to a signif-
icant difference in the frequency response of the scattering,
especially for large ka.

A somewhat similar approximation has been obtained
by Sharma and Saha [3] recently. In this approximation
too, as in DWBA, the unknown pressure field within the
scatterer is assumed to have the same functional form as in
BA. But k; is now replaced by #nk;, where n = ¢/cy = 1/h
is the mismatch of wave speed in the surrounding medium
and in the scatterer. The quantity » is analogue of the re-
fractive index in optics. The expression for the scattering
amplitude in this modified Born approximation (MBA)
takes the form

(R
Bppalk, ) = K20 [y + ny,c086] 212 7)
’ R

where R = kav/1 + n* — 2ncos@. The subscript mba indi-

cates the modified Born approximation.

Theoretically, the validity domains of (6) as well as (7)
are also given by (3) and (4). Thus, numerical compar-
isons of MBA and the BA were performed by Sharma
and Saha [3]. It was demonstrated that MBA leads to a
larger applicability domain in comparison to BA. Numer-
ical computations have also been made for |®,,,|* and
|®,50]%> by Saha [8] at scattering angles 8 = 0, 7/4 and
. It was found that at least for near forward scattering
MBA performed better than DWBA over a large range
of x values. The comparisons were made in the range
p1 =101 -1.04,«; =0.89—-0.97 and ka = 1.0 — 20.0.

3. Hart and Montroll approximation

The scattering amplitude for the scattering of a plane
acoustic wave by a sphere in partial wave analysis can be
written as [1]

D, (k. 0) = % > @m+ 1)by Pu(cos 0), (8)

m=0

where P, is Legendre polynomial of order m and

_ InXjm () — )/
h:’n(x)jm(y) - ahm(x)f"m(y) .

In equation (9), j, and h,, are respectively the spherical
Bessel and Hankel function of order m and primes denote
derivative with respect to their arguments. Here x = ka,
v = nka and @ = np/p;. Subscript ex in equation (8)
refers to exact solution.

For large values of index m, such that m/x << 1, the
spherical Bessel functions can be approximated as [9]

9)

m

) 1 m+1
JnlX) ~ 7cos(x~ ;r),
X 2

m+ 1
: 7:), (10)

|
Jx) ~ = sin(x -
X
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and
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The denominator D of (9) can then be readily expressed
as,

p=tel) ety o= lailuta)l gy
Xy 2 a+1

where « = /K p/p1k is nothing but Z/Z; with Z; and
Z respectively as acoustic impedances of obstacle and sur-
rounding medium. Clearly the contribution of the second
term depends on impedance mismatch, @, between obsta-
cle and the swrrounding medium. With this approximation
for the denominator in place, the scattering amplitude in
(8) can be expressed as

() = C Y 2m+ 1) [/, ()jm(¥) = @jin(x) ()]

m=0

- [1 = r(=1)"e™| Pylcos 0), (13)

where

2xyei,\'(n~1)

= ; 14
k(a+ 1)1 = r2ety] )

and ¥ = (@ — 1)/(a + 1). The subscript hma refers to Hart
and Montroll approximation. The infinite sum in (13) can
then be carried out by employing the fellowing relations:

T () jm(¥) = jm(2) jy (V)

d d
= [55 ~ 53 [in@in). (1s)
> @t Djn(in() Pateos0) = S22 (16)
m=0
and
31"+ D) Pue0s0) = T, (17)
m=0

where R = /x? + y? + 2xy cos 6. The summation leads
to the following simple formula for the scattering ampli-
tude,

ix(n—1) : R
[(;f,( + ny, cos B)MT)

21})1.1 (ﬁ)
_R ,

2nx‘ae

Dpa(0) = W

— r{ye — ny,cos e (18)
which is the main result of this paper. In arriving at (18)
we have ignored terms of order r>. We refer to (18) as
acoustic analogue of HMA scattering amplitude in optics.
For a = 1, the second term on the right hand side of (18)
vanishes yielding

ix(n—1) Jl(R)

Dpma1 (0) & nx*ae (s + ny, oS G)T (19

But for a factor n?, this approximation yields exactly the
same expression for scattered intensity,

I(g) = |¢)(9)f1mal ‘2:

as does MBA. This explains why MBA yielded excellent
results near @ = 1 in an earlier work [3]. In addition, if (3)
and (4) are satisfied, exp(ix(n — 1)) and n can be taken as
unity and (19) reduces to MBA. Thus, for particles with n
close to unity, the second term in (19) can be viewed as a
correction term to MBA provided r < 1.

Let us now examine more closely the validity of approx-
imations made in arriving at (18). These are, m is large
and m/x < 1. The restrictions imply that scatterer is large
compared to the wavelength. At first sight, the use of the
approximation m/x < 1 in writing (10) and (11) may
appear questionable because it is well known that signifi-
cant contributions in the scattering amplitude (8) also arise
from m values that are approximately equal to argument
x. Nevertheless, the approximation has been used in op-
tics [7, 10] and is found to yield good predictions for scat-
tered intensity at all angles for small particles and at small
angles for large particles. In part, the reason for this has
been traced to the fact that, apart from the diffraction term,
the dominant contribution at forward scattering for a weak
scatterer arises from modes close to central incidence i.e.,
from m values satisfying the condition x = m [11]. This
suggests a limitation of weak and small angle scattering
on the validity of (18). Also as was noted earlier in this
section, HMA reduces to MBA for weak scatterers imply-
ing that HMA is valid for x < 1 also despite the initial
assumption of large x in the derivation of HMA. A numer-
ical check on the validity of HMA will be made in the next
section.

The extinction cross-section is related to the forward
scattering amplitude via the relation [1, 6]

o = Im( Eiai ) 20)

where ®©(0) is the forward scattering amplitude. As ®(0)
in BA, DWBA as well as in MBA is purely real, the o,
obtained from (20) is zero in all three approximations. To
rectify this shortcoming, a multiplicative phase term was
designed by Chu and Ye [6].

The DWBA, in conjunction with this term, could be cast
in the following form:

D o swba(B, X) = Dgypge? HEANA=Dx 1)

The phase term in (21) is designed by extending the ex-
act one dimensional analytic solution to three dimensions
in a heuristic manner. A need for more systematic deriva-
tion was recognized by authors themselves. In the present
derivation the phase term emerges in a natural way. But
this phase differs from the one obtained in (21). However,
this is not surprising because (18) and (21) are based on
entirely different approaches.
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Figure 1. A comparison of exact scattered intensity with that in
various approximations for x = 1,7 = 1.099 and & = 1.0465.
Solid line: Exact, Large dashed line: BA, Small dashed line:
DWBA, Dotted line: MBA, Dash-dot line: HMA,

4. Numerical comparisons

In this section scattered intensities in BA, DWBA, MBA
and HMA and imaginary part of scattering amplitude in
PCDWBA and HMA have been compared numerically
with exact computations for a sphere and results have been
presented for some representative values of x, @ and a.
For scattered intensity PCDWBA is same as DWBA. The
scattered intensity has been defined as 1(8) = |®(6)[*.
In all computations in this paper, k has been taken to be
8159980918 m~'. This is a typical value for biomedical
tissues which was used in our earlier computations [3]
also.

Figure 1 shows a plot of I(#) against 6 for x = 1.
p1/p = 1.05 and k; /k = 1.15. These values of p/p and
K1 /i are equivalent to @ = 1.04654 and n = 1.09886.
It can be seen from Figure | that for impedance and ve-
locity mismatch of this order, all approximations perform
satisfactorily at small scattering angles. The DWBA has
a slight edge over others. At backward angles, HMA per-
forms best with BA a close second. Errors are compara-
tively larger in MBA and DWBA.

The value of &,/ is increased to 1.5 in Figure 2 while
p1/p and x remain unchanged. Corresponding « and n are
a = 1.19523 and n = 1.25499. Except for HMA, the error
is significantly larger in all other approximations in com-
parison to those in Figure 1. That the role of correction
term in (18) is important is clearly evident in Figure 2.
The HMA performs best at all scattering angles. Even for
back-scattering HMA yields excellent results. These fea-
tures of HMA become even more prominent in Figure 3
where we have plotted scattering patterns for same values
of x and p; /p but ki /x is further increased to 2.0. Corre-
sponding values of a and # are now 1.38013 and 1.44914
respectively.

In the above figures we have shown the effect of increase
of a on the accuracy of various approximations. However,

Figure 2. Same as Figure 1 but for n = 1.255 and & = 1.195.
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Figure 3. Same as Figure 1 but for n = 1.449 and « = 1.38.

in doing so we have simultaneously increased the value
of n also. A typical graph showing the effect of increase
in « for a fixed n can be seen in Figure 4. The n value
here is same as in Figure 1 but « has increased to 1.08798
from 1.04654 with py/p = 1.01 and &y /x = 1.19554. It
is evident that the performance of HMA relative to other
approximations is better in Figure 4 in comparison to that
in Figure 1.

Clearly, HMA constitutes a notable advance over other
approximations at all angles when (a—1) is not very small.

For large value of x, R is a large number as long as
cos 0 remains positive (8 = 0 — 90"). Hence, the contribu-
tion of correction term is negligible for near forward an-
gles. Thus, HMA and MBA are not expected to yield very
different values for large particles at small scattering an-
gles. At @ = x/2, R = R and at scattering angles greater
than this R starts decreasing and R starts increasing. This
means that at backward angles the correction term could
even become the dominant contribution if r is not very
small. Figure 5 shows a comparison of scattered intensi-
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Figure 4. Same as Figure 1 but for o increased to 1.088.
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Figure 3. Same as Figure 1 but for x = 10.0,

ties in various approximations against exact scattered in-
tensity for x = 10.0, n = 1.09886 and ¢ = 1.04654
at small scattering angles. Scattered intensity is depicted
only up to 30 deg to maintain clarity in the figure. As ex-
pected MBA and HMA yield identical results. Again, as
in case for x = 1, all approximations yield reasonable
results at small scattering angles. However, the HMA or
- MBA yield the best results in the sense that they reproduce
the positions of maxima and minima most accurately. This
is noteworthy because the positions of minima and max-
ima are related to the size of the scatterer. The minima
are a result of first zero of the Bessel function which oc-
curs when its argument is 4.49. As @ increases, errors in all
the approximations increase. The results for a higher mis-
match for the same value of x are shown in Figure 6. Here
a = 1.19523 and n = 1.25499. All the features noted from
Figure 5 become more explicit in this figure. We noted
that HMA replicates, although only qualitatively, even the

Figure 6. Same as Figure 2 but for x = 10.0.

back-scattering lobe for large particles. This is not the case
for other approximations.

Imaginary parts of the scattering amplitude in the for-
ward direction predicted by PCDWBA and HMA have
been compared with exact computations for a large num-
ber of p1/p and k) /x values to test the potential use of
(20). The values of x were limited to x < 20 as in the
work of Chu and Ye [6]. We find that the percent errors in
approximations are not very small. Nevertheless, there are
regions of x, n and « values for which PCDWBA works
well. On the other hand, there are also domains of x, n and
a values for which HMA yields better agreement with ex-
act results. However, a clear cut identification of domains
in which use of one approximation or other is suitable for
imaginary part of scattering amplitude doe not seem pos-
sible in a straightforward manner.

5. Conclusions

To summarize, a new approximate formula (referred to as
HMA) is presented in this paper to describe the scatter-
ing of acoustic plane waves by a sphere. This formula is
acoustic analogue of Hart and Montroll formula of opti-
cal scattering. It is fundamentally different from previous
modifications of BA in that it takes into account higher or-
der impedance mismatch corrections and its validity is not
limited by inequalities (3) and (4).

The HMA has been contrasted numerically with exact
computations for various values of size and impedance
and velocity mismatch parameters, For completeness, the
Born approximation, the distorted wave Born approxima-
tion and the modified Born approximation have also been
included in the comparison. Following conclusions can be
drawn from the comparisons of scattered intensities. For
small scatterers i.e., for x < I, all approximations exam-
ined in this paper are reasonably good at small scattering
angles when the scattering is weak. The best among these
is the DWBA. At large scattering angles different approxi-
mations yield widely different results. The HMA yield best
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predictions and gives very good results even al backward
angles. As « increases, the HMA is found to yield the best
agreement with exact scattered intensities at all scattering
angles. In relation to other approximations, HMA is much
better even at backward angles.

For larger particles, it is found that (i) In the region
where cos @ is close to 1, R is much larger than R. Thus,
the effect of second term in HMA is negligible at small
scattering angles. In this region HMA and MBA do not
vield significantly different results. Here, both the approx-
imations are found to be equally good for first few max-
ima and minima. (ii) From 6 = 90deg to 8 = 180deg,
cos @ varies between 0 and —1. In this angular domain, the
second term can become the dominant term at backward
angles if r is not very small. None of the approximations
yields good results at backward angles, though HMA pre-
dictions are closest to exact results and even mimic the
back scattering lobe qualitatively.

The phase term obtained in HMA differs from that ob-
tained in PCDWBA.. This is not surprising because the two
derivations differ in approach. While the PCDWBA has
been based on some heuristic arguments, the HMA has
been derived systematically starting from the exact solu-
tion for scattering by a homogeneous sphere. From the
numerical comparisons of imaginary part of the forward
scattered amplitude, it is concluded that one needs to be
rather cautious in using (20) in conjunction with HMA or
PCDWBA.

Finally, it may be mentioned that although we restricted
ourselves to a spherical scatterer in this paper, a formula
on same lines can be easily derived for an infinite long
cylinder in an identical way. This problem, in the context
of optical scattering, has been addressed by Sharma er al.
[10].
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