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Accuracy of a recently proposed modified Born approximation (MBA) has been examined for size determination of an
isolated scatterer. Two methods have been employed for this purpose. One is based on the analysis of the angular scattering
pattern of plane waves and the other on analysis of the power spectrum of the backscattered pulse. In each case, domain of
validity of the modified Born approximation for size determination has been assessed for two exactly soluble test models,
namely, the scattering by a sphere and an infinitely long cylinder. For completeness, comparisons with conventional Born
approximation (BA) results have also been made. The performances of the approximations have been examined for
scatterers whose size parameters vary over a range 3 to 75. Mismatches of the density and compressibility are less than 15%
in these calculations. Numerical results show that MBA indeed has a larger validity domain in comparison to BA for an

intermediate size weak scatterer.
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"1 Introduction
The techniques of back and angular acoustic wave
“scattering have been widely used to characterize a
single scatterer as well as particles in a collection of
scatterers”™". For interpreting the scattering, whether
from an isolated particle or a collection of particles, a
pre-requisite is the knowledge of a theory that is
capable of describing the scattering by a single
scatterer. Exact analytic solutions for the problem of
acoustic scattering by targets of regular geometry
(e. g. sphere, long cylinder etc.) are available'!” and
. can be expressed in terms of the frequency of the
incident wave, size of the scatterer and mismatch of
density and compressibility of the scatterer and the
surrounding medium. However, these solutions are in
the form of infinite series and therefore relationship
between the measured quantities and the physical
parameters is not distinct. This makes it cumbersome
to obtain information from the measurements.
Further, it may not be possible to obtain exact results,
analytic or numerical, for all shapes, sizes and
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mismatch parameters. To overcome these hurdles, a
way out is to employ approximate methods. These
methods relate experimental measurements to
physical properties of the scatterer in a simple and
transparent way and could be the only possible
alternative for the analysis of scattering pattern for
particles of shapes for which exact solutions are not
available.

One of the extensively used approximations to
describe the scattering measurements is the Born
approximation'®'® (BA). The approximation is known
to yield good results for weak scatterers. A simple
modification to BA, termed as modified BA (MBA),
was recently proposed by us'®"®. This modified form
is based on an analogous version of the BA in the
context of scattering of light by a dielectric sphere™
and an infinitely long cylinder”'. Theoretically, the
validity conditions for BA and MBA coincide.
Therefore, their validity domains were contrasted
numerically'®'?. Scattering of plane and pulsed plane
waves by a homogeneous sphere were considered.
Detailed comparisons were made for forward and
backscattering in case of plane waves and for pulse
intensity integral and for maximum value of positive
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peak pressure of scattered pulse in case of pulsed
plane wave. Angular scattering pattern was also
“compared for some particle sizes in case of plane
wave scattering. As expected, MBA showed larger
validity domain in comparison to BA.

A number of techniques have been employed to
obtain size information using ultrasound scattering
within the framework>'*'"# of the BA. In the present
paper, our aim is to examine the role of MBA in size
determination of a single isolated scatterer. We
examine this for two techniques. (i) It is well known

_in light scattering problems that angular positions of

minima in a scattering pattern can be related to
-the scattering parameters and thus to size of the
scatterer™. In this paper, we use one such technique
for ultrasound scattering. The relevant relationships in
the framework of BA are independent of relative
density and compressibility of the scatterer and the
surrounding medium. On the other hand,
corresponding expression in MBA are dependent on
relative density and compressibility and hence, are
expected to yield more accurate results and wider
validity domain. (ii) One can also extract the scatterer
* size information from the positions of minima of the
power spectrum associated with a scattered pulse at
any direction when the incident wave is a pulsed
plane wave. In this method, size is estimated by
analyzing the back scattered power spectrum (BSPS).
We examine, numerically, the accuracy of MBA in
size determination and compare with errors involved
in BA for both the techniques.

2 Plane Wave Scattering
21 Scattering by a sphere
The scattering amplitude for the scattering of a
plane acoustic wave by a sphere in partial wave
analysis can be written'® as:

D, (k, 9):é§(2m+l)bm P (cos®) ..(D)
where
:ji’!](x)jﬂl(y)—ajnl(’x)jllﬂ(y) .”(2)

" h;: (x)jm (y) - ahm (x)-/’l" (y)

Here, j,, and A, are the spherical Bessel and Hankel
function of order m and primes denote derivative with
respect to their arguments, respectively. The

arguments are x = ka and y = nka = k,a where k and &,
are the wave numbers inside and outside of the
scatterer, respectively (a being the radius of the
scatterer). Here, n is given by, n = kJ/k The
impedance mismatch parameter ¢ is given by o =
n(p/p.) where p and p, are the density of the ambient
medium and of the scattering region, respectively.
The direction of the observer (k;) makes an angle 0
with respect to the incident wave (k). Finally, P, is
the Legendre polynomial of order m. Subscript ex in
Eq. (1) refers to the exact solution.

The scattering amplitude in the Born approximation
is written as'®:

2
®,(k,6) =3‘q—[n +7, 038, (qa), .03)

where, y = (k—~k)/k and y, = (pp)/p. are the
parameters defining mismatch of compressibility and
density, respectively with j, as the spherical Bessel
function of first order. Further, q = k—k; is the transfer
of wave vector with its magnitude given by q =
2ksin(0/2) and the subscript b refers to the Born
approximation. In the derivation of Eq. (3), it is
assumed that the unknown field within the scatterer is
the same as the incident field [exp(ik.r)]. Thus, this
result is valid for the case of weak scatterer.
Theoretically, the conditions for the validity of BA
are:

7| <<1 (4a)

...(4b)

’7/”«1’

xl}/k|<<1 x‘ypl«l.

It is clear from Eq. (4b) that for a weak scatterer, the
approximation can be valid even for particles that are
larger than the wavelength of the incident wave. We
refer to this size range as intermediate size range. For
smaller particles, one can use the Rayleigh or the long
wavelength approximation'®.

In MBA, the scattering amplitude takes the form'®:

2
®,,(k,6) =27 +n7, cos 6] (Ra) - (5)

Where R = K; - nk and its magnitude is

R = k~N1+n* —2ncos@ . The subscript mb indicates

the modified Born approximation. Here, n appears in
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the formula because the unknown pressure field
within the scattering region is assumed to be
. exp(ink.r) instead of exp(ik.r) as in BA. This choice
makes the field inside the scattering region dependent
- on the material properties of the scatterer. The validity
domain of this approximation remains the same and is
also given by Eq. (4).

It may be noted that the scattering amplitude in Eq.
(3) or in Eq. (5) contains j;. Thus, there are certain
angles in the scattering pattern where the scattered
| @(k,0)
correspond to minima in the scattering pattern. The
first three minima are given by the relations x, = 4.49,
x; = 1.72, x, = 10.90, where, x|, x, x, are the
corresponding arguments of j;. Therefore, one can
casily find the size of the scatterer if the angle 0 of a
particular minimum is known. From the first

minimum, we can write the estimated size through
BA as:

intensity becomes zero. These angles

Qyy = % ity o (6)

Subscript bl corresponds to the estimated radius
employing BA in conjunction with first minimum.
Similarly, using Eq. (5) for MBA, size of the scatterer
can be obtained from the following relation

a _ 449
tmbl k(1dn®=In cond,)? e (7

Eq. (7) is useful for size determination if one knows
the value of 7 and the scattering angle 6,. Note that

- Eq. (7) is identical to Eq. (6) for n=1. That is, as
n —> 1, the results from MBA and BA approach each
other.

The scatterer size may be estimated from higher
order minima too. For second minimum, we have:

-
T2

a. g = = ] ..
mib2 E{1dn® wn con B, e : (8)

"Eqgs (7) and (8) suggest that n and x can be
determined simultaneously from the knowledge of
any two minima positions in the scattering pattern.
However, when this possibility was examined, it was
found that at times this yielded a complex value of 7,
even for a real n scattering pattern. It was concluded

that MBA is not accurate enough for determination of
n. But, as we shall see later, its estimation of x is
quite accurate.

The scattered intensity can also become zero if the
condition:

+ ¥, cost =0, ~..(9)
for BA and the condition

cosd = 0,

Ve TN .-(10)
for MBA are satisfied. That is, there is an angle where
scattered intensity has a minimum that is dependent
only on the material properties of the scatterer and not
on its size. We call this angle the material minimum.
A potential application of this minimum is that it may
be used to find either density or compressibility of the
scatterer if one or other is known.

2.2 Scattering by a long cylinder

Scattering by an infinitely long homogeneous
cylinder is essentially a two-dimensional problem and
for the perpendicular incidence of the input beam the
scattermg amplitude in terms of trigonometric series
is given'® by:

2 1 ‘
for (@) = w': s S Py COS T, ~(11)
where €, =1 for m=0 else £, =2 and
‘ — __ JIm (o) din 0= Jon L) e (D
—_— ..(12)
B S ) Jo Ko fy Uy R ()

Here, J, and H

Hankel function of m™ order. The primes over the
functions denote the derivatives with respect to their
arguments.

In the Bormn approximation, the angle distribution
factor can be written '®as:

=% fn k*a [}x g, r:cvsq)]j (qﬂ ...(13)

with its

are respectively the Bessel and

fb(‘P

where magnitude
g =2ksin(8/2) . By proceeding in a similar manner

as in Eq. (13), one can obtain the scattering amplitude
in MBA as:
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N o tm 2 2 Ji(Ra)
fo(0) = P k*a [y, + ny, cosg] ==
..(14)
~where R= ]_6; — nk with its magnitude

= k\/l +n* —2ncos(6)

First three zeros of J, occur at argument values

x, =3.83 or x, =7.01 or x; =10.71. As a result,

the formulas for size determination in BA and MBA
in conjunction with first minimum may be written as:

' _ 383

o1 = Zx in(ey -(15)
and

Qpan1 — 2 .+ {16}

kf1in®—2ncosg, )

respectively. From Eq. (15), scatterer size can be

estimated from the knowledge of the position of the

first minimum. For size determination from Eq. (16),
. additional information 7 is required.

3 Pulsed Plane Wave Scattering

A pulse propagated by a real transducer can be
approximated as a Gaussian wave packet™ i.e., the
envelop of the pulse is Gaussian. Though in the time
domain, tailing edge of the pulse falls slowly
compared to its leading edge so as to maintain the
causality condition. In this paper, we assume that the
input pulse is a Gaussian wave packet and its spatial

- frequency domain amplitude distribution s
represented by:
1/4
(i 13\t .
FE Ry = (M:) g exp [~ [ikp]
..(17)

where k, is the centre frequency of the wave packet
with its standard deviation (1/0¢). The coefficient is

chosen in such a way that the total energy of the input
signal is equal to unity. The phase term exp(iku)

“tells us that the pulse at time f=0 is located at
z =—u if z is the axis of propagation of the pulse.

Superscript (in) is used to denote the input pulse.
The incident pressure pulse is given by:

p(i‘n}{_’_‘if) _ iﬁw J'D‘” "“’””(k)é ’*‘z‘—””dk ...(18)

s

The Pulse Intensity Integral (PII), defined as the time
integral of the instantaneous intensity®, for the input
pressure pulse at a given point z is:

PHG () =2 [ p@ () 2G4 (19)
pe

where * denotes complex conjugate of the function
and ¢ is the sound speed in the ambient medium.
Though the limits of the integration are from —oo to
oo, in the real experimental situation, in general, they
can be truncated to finite limits® without losing any
significant information. Moreover, in practice any
signal is wusually corrupted by the presence of
electronic noise. Nevertheless, its contribution to PII
can be removed to a great some extent by averaging
signals over a number of frames*® where each frame
contain signal (noise plus desired signal) taken at a
time. Integration in Eq. (19) can be carried out by
using Eq. (18) to yield

PH () = = [* |5 (1)) dk = -

Zac Yoo

...(20)

which only depends upon the properties of the
ambient medium for this particular choice of the input
spectrum.

3.1 Scattering by a sphere
The scattered pressure pulse in the asymptotic
region (» — o) can be expressed as

e el o]

dk.
.21

(d oy — 1% =find pasy
pa:c (T\' t) - Jr__w 2 “'E': )

"1, ah
#,, (k,8)—

Superscript (s) represents the scattered wave. Once

again the pulse intensity integral in the backscattered
direction for the scattered pulse is given by:

PIIE,::)( )___P.'a’ (uc I*E;:

L]

Lo (’m’ 4e) . Uﬁ; ‘f{) ' “dk .
=l 22)

Therefore, the integrand in Eq. (22) gives the
scattered intensity in the backscattered direction for a
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>plane wave of wave number k. The variation of
| 7™ (kYD (k,7)|* with k is analogous to the

power spectrum of the backscattered pressure pulse in
an actual experimental situation. Similar expressions
can be derived for approximate methods.

which
! ];(in)(k)q)m (k,m) |2 becomes zero or minimum

If one knows the k& values for

then the size of the scatterer can be found by using
" BA or MBA. From the exact results minima positions

are known for various k wvalues and therefore,

average value of minima separations Ak can be
calculated. Thus, from BA:

Wy
i,

a,, = —, ...(23)
and from MBA

r."égﬂ == ...(24)
where

— 1 o

OX = ——— v, — N, -(23)

is the mean scparation between two successive
. minima related to the zeroes of j,, where n; and n,
are the outermost minima of the power spectrum,
respectively. Corresponding arguments of j, are x,

and x,  respectively.

3.2 Scattering by a long cylinder
The scattered pressure pulse in the asymptotic
region (1 — oo) can be expressed as:

MR M A w) ———dk,
..(26)

Once again the pulsc intensity integral in the
backscattered direction for the scattered pulse can be
derived as:

o g rp i
f . Ell

E

The variation of | 3™ (k) f.. (k,7) |> with k may

be contrasted with the power spectrum of the back-
scattered pressure pulse in practice. Similar
expressions can be derived for the approximate
methods too.

knows the k& wvalues for which

| 7™ (k) £, (k,7) |* becomes zero or minimum then

If one

the size of the scatterer can be found by using BA or
MBA model as it was in Eq. (23) or Eq. (24) but the

zeros are those of J| for this case.

4 Numerical Comparison

The accuracy of MBA in size determination using
angular scattering pattern as well as backscattering
methods and compare the results so obtained with
hos¢ obtained using BA are accessed. For angular
scattering method we consider an incident plane wave
while for the protocol employing backscattering we
employ pulsed plane waves. In both methods two
types of scatterer have been considered. These are
homogeneous spheres and infinitely long cylinders.
For both types of scatterers exact analytical solutions
exist. The acoustical properties (density and
compressibility) of the scattering region have been
varied up to *+15% with respect to the ambient
medium. For our calculations we took 5 MHz as the
frequency of incident plane wave. The size
estimations of isolated scatterers by using
approximate methods have been carried out over a
large range of scatterers whose size parameters vary
from 3 to 75.

The lower limit of x is chosen on the basis that at
least one minimum should occur within the entire
angular domain, otherwise the proposed method
cannot be useful. On the other hand the upper limit
has been fixed to 75 because after that the region of
validity (accuracy <10%) of approximations become
very small. To estimate the size of the scatterer from
the backscattered power spectrum we consider the
scattering of two pulses each of centre frequency 5
MHz. The bandwidth (-6 dB) of the pulses are 1.406
MHz (28.12%) and 4.016 MHz (80.32%)
respectively. And accordingly, two pulses are narrow
band (NB) and wide band (WB) respectively with
pulse durations = 562.5 ns and = 237.5 ns
respectively.
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Figure 1 shows a typical angular distribution of
scattered intensity calculated using exact solution for

a sphere of x=22 with p,/p=090
k,/k=1.10. As

pattern shows minima and maxima at certain angles.
10°

and

expected, scattered intensity
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* Fig. 1—Angular scattered intensity distribution for a sphere of

size x =22 with p,/p=0.90 and x,/x=1.10
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First few minima in this case occur at 11.75°, 20.25°,
24.75°, 29.25° and 37.50°. From the position of these
minima, size of the target can be determined. For the
first minima the relations in BA and MBA are given
by Eqs (6) and (7) respectively. It can be easily
ascertained that the third minimum in Fig. 1 is a
material minimum and thus, need not be taken into
account for size calculations.

Representative error charts for BA and MBA in
size determination are shown in Figures 2(a) and 2(b),
respectively for a spherical scatterer with x=22.
Figure 2(c) and (d) show the corresponding bar
diagrams. The error in size determination has been
defined as:

%Q—‘:a{

size error = X 100%, ...(28)

where a and a,, are the true size and estimated size

respectively. The exact scattering pattern is obtained
for a particle of given size a and than a, is obtained
from this scattering pattern using approximate
formulas. Four different gray values have been
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Fig. 2—(a) Error contour charts for size estimation through angular scanning in BA for x=22. White region: error <5%, gray region:
error 5-10%, dark region: error 10-50% and darkest region: error >50%. (b) Same as (a) but for MBA with white region: error <5%, gray

region: error >5%. (c) Bar diagram for (a). (d) Bar diagram for (b)
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-attributed to mark the errors of various regions
(Fig. 2). For a desired accuracy in size calculation
MBA has a larger domain of validity in comparison to
BA (Fig. 2). For example, if 10% is the acceptable

cerror, MBA can be used for entire range of ¥, and
7, values considered here. BA on the other hand is

valid with that accuracy over about 82% of the region.
An important observation that can be made from
Fig. 2 is that the approximations in size determination
“are good near n =1. The same is not true for ¢ . The
errors can be quite large even when the impedance
mismatch parameter is close to 1. This implies
that these approximations should be looked upon

767

Table 1 presents the fractional areas, normalized
with respect to the whole region, with errors <5% and
<10% in size determination from the first and second
minimum for various size parameters of a spherical
scatterer. Corresponding results for a long cylindrical
scatterer are presented in Table 2. It is clear from
results obtained by employing the first minimum that
MBA has a larger validity domain in comparison to
BA for almost all x values. The maximum x value
for which an approximation can also be used alsc
becomes larger in MBA. For example, if the error
limitation is 10% then BA is valid in 80% of the

region of (¥, 7,) domain if x <22. But for MBA

as B=31 approdimations mud et B @31 this value of' X goes up o about x < 40.'It may be
approximation. noted that this value of x increases further if the size
Table 1—Size crror from angular scattering pattern for shperical scatterer
Size Fractional arca covered by the error
(ka) From I minimum From 2™ minimum
Error <5% Error <10% Error <5% Error <10%
BA MBA BA MBA BA MBA BA MBA
3 0.65 0.84 0.84 0.86
5 0.80 0.92 0.96 0.96 0.57 0.82 0.84 0.90
7 0.78 .0.96 0.96 0.96 0.65 0.80 0.88 0.86
10 0.76 0.94 0.92 0.98 0.76 0.92 0.92 0.92
12 0.80 0.94 0.90 0.96 0.71 0.90 0.92 0.92
15 0.69 0.88 0.88 0.94 0.73 0.90 0.90 0.92
18 0.78 0.90 0.84 0.98 0.73 0.88 0.90 0.92
20 0.80 0.84 0.86 1.00 0.76 0.88 0.88 0.90
22 0.73 0.94 0.82 1.00 0.67 0.88 0.82 0.88
25 0.57 0.92 0.67 1.00 0.63 0.88 0.82 0.90
35 0.35 0.88 0.63 0.88 0.71 0.88 0.82 0.88
50 0.39 0.63 0.45 0.76 0.63 0.80 0.63 0.80
75 0.35 0.33 0.35 0.51 0.37 0.59 0.63 0.59
Table 2—Size error from angular scattering pattern for cylindrical scatterer
Size Fractional area covered by the error
(ka) From 1* minimum From 2™ minimum
# Error <5% Error < 10% Error <5% Error <10%
BA MBA BA MBA BA MBA BA MBA
3 0.65 0.82 0.84 0.86
5 0.80 0.98 0.98 1.00 0.57 0.73 0.84 0.82
7 0.82 0.98 0.98 1.00 0.67 0.86 0.90 0.92
10 0.78 0.94 0.96 0.98 0.73 0.92 0.94 0.96
12 0.67 0.92 0.92 0.98 0.71 0.94 0.94 0.96
15 0.82 0.88 0.88 1.00 0.71 0.94 0.92 0.94
18 0.73 0.94 0.86 1.00 0.76 0.94 0.92 0.94
20 0.73 1.00 0.82 1.00 0.67 0.88 0.88 0.94
22 0.57 0.92 0.67 1.00 0.67 0.94 0.88 0.94
25 0.49 0.96 0.67 0.96 0.67 0.88 0.82 0.94
35 0.39 0.80 0.61 0.88 0.67 0.88 0.82 0.88
50 0.45 0.51 0.45 0.63 0.45 0.67 0.63 0.76
75 0.29 0.31 0.29 0.49 0.43 0.55 0.61 0.61
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! ' " " ' ‘ is determined from the second minimum. In the case
08} . considered in Table 1, this value increases to about
x =50 when size is obtained from the position of the
second minimum. Similar trends are observed for
infinitely long cylindrical particles too.

071 4

0.6} +

In Fig. 3, a typical plot of normalized backscattered
power spectrum is displayed for x=22 with
o : 1  pP./p=105 and x,/x=0.95. It may be seen that

Normalised BSPS

03f . for some frequencies intensity becomes minimum and

0.2 -

average value of separations of spatial frequency Ak
off . between two successive minima can be obtained from
i . . , . this spectra. Therefore, one can easily find out the size
" ° Spazt?al frequgsncy, . (n::n_1) 35 ®  ofa spherical target by using Eq. (23) and Eq. (24).

As size decreases, lesser number of oscillations are
observed in the spectrum and this in turn leads to

Fig. 3—Normalized backscattered power spectrum (BSPS) for a . —
sphere of x=22 with p,/p=1.05, x,/x=0.95« greater error in value of Ak .
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Fig. 4—(a) Error contour charts for size estimation by analyzing backscattered power spectrum (BSPS) in BA for x =22 . White region:
error <10%, gray region: error 10-20%, dark region: error 20-50% and darkest region: error >50%. (b) Same as (a) but for MBA. (c) Bar
diagram for (a). (d) Bar diagram for (b)
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Figure 4 shows error charts in size determination in
using BA and MBA when backscattered power
spectrum method is used for this purpose.
Corresponding bar diagrams are also included in that
figure. The values of fractional areas covered by
specified errors are presented in Tables 3 and 4 for
various X values for spherical and infinitely long
cylindrical scatterers. Results for NB pulse in Table 3
show that MBA has a larger domain of validity than
BA almost in the whole particle size range. But the
difference in the two is not very significant here. It is
also noted that for x <7, BA as well as MBA are

valid only over a very small domain of (¥, 7,)

region. Further, as in angular scattering method, the

approximations are best for size determination near
n=1. Similar trends are observed in the case of
WB pulse too. However, for small size parameters
(x<7), WB pulse provides results better than
NB pulse.

Tables 1-4 presents that, in general, the results
obtained by angular scattering minima positions have
larger validity domain in comparison to the
backscattering method. The difference 1is less
significant for the case of infinite cylinders. It is much
more significant for the case of homogeneous spheres.

5 Conclusions
In this paper, we have examined the validity
domain of a modified Born approximation for particle

Table 3—Size error from backscattered power spectrum for spherical scatterer

Size Fractional area covered by the error
(ka ) From BSPS (NB Pulse) From BSPS (WB Pulse)
Error < 5% Error < 10% Error <5% Error < 10%
BA MBA BA MBA BA MBA BA MBA
3 0.24 0.14 0.35 0.37 0.33 0.55 0.59 0.78
3 0.14 0.18 0.22 0.29 0.47 0.65 0.69 0.80
7 0.49 0.63 0.71 0.78 0.51 0.69 0.73 0.80
10 0.33 0.45 0.55 0.67 0.53 0.65 0.71 0.76
12 0.43 0.53 0.65 0.71 0.51 0.61 0.73 0.71
15 0.57 0.61 0.65 0.69 0.53 0.59 0.67 0.76
18 0.51 0.59 0.67 0.65 0.53 0.57 0.69 0.73
20 0.45 0.57 0.65 0.59 0.47 0.55 0.67 0.65
22 0.41 0.47 0.59 0.59 0.47 0.51 0.67 0.63
25 0.45 0.51 0.57 0.55 0.49 0.53 0.65 0.63
35 0.43 0.51 0.65 0.71 0.49 0.55 0.67 0.67
50 0.45 0.53 0.61 0.65 0.35 0.45 0.59 0.65
75 0.14 0.20 0.37 0.39 0.18 0.16 0.35 0.37
Table 4—Size error from backscattered power spectrum for cylindrical scatterer
Size Fractional area covered by the error
I - From BEPS (NB Pulse) From BSPS (WB Pulse)
) Trerey < 5% Error < 0% Error <5% Error < 10%
M A BA MRBA BA MBA BA MBA
3 .08 (.04 (RS 0.06 0.41 0.63 0.67 0.84
5 { 30 (.06 0.10 0.49 0.80 0.80 0.90
5.59 0.84 0.49 0.78 0.84 0.88
1o 0.71 0.80 0.49 0.73 0.80 0.86
12 k 0.71 0.82 0.49 0.71 0.78 0.84
15 ). 5k .80. 0.80 0.84 0.53 0.71 0.76 0.80
18 245 .76 0.78 0.84 0.57 0.71 0.76 0.84.
20 0.49 0.76 0.76 0.80 0.49 0.67 0.73 0.80
22 0.45 0.69 0.69 0.78 0.51 0.71 0.76 0.80
25 0.55 0.73 0.78 0.82 0.49 0.71 0.73 0.84
35 0.45 0.69 0.71 0.82 0.49 0.67 0.69 e
50 0.45 0.63 0.67 0.73 0.47 0.63
75 0.14 0.16 0.20 0.20 0.12 0.16 0.29 .24
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sizing and compared the results so obtained with
those obtained by using the conventional Born
approximation. The target considered here is an
isolated scatterer whose size is larger than the
wavelength of the interrogating waves (Mie
scatterers). Two methods have been used and
“compared. One is based on the analysis of angular
scattering data and the other is based on the analysis
of backscattered power spectrum. Two test cases have
been considered. These arc scattering by a
homogeneous sphere and scattering by an infinitely
long cylinder. Exact solutions are available for these
test cases. I'ollowing conclusions emerge from the
present investigation:

(i) If the scattering is weak and provided the
particle size parameter is not very large, BA as
well as MBA lead to reasonably good
assessment of the size of the scatterer.
Comparatively, results from MBA are superior.
The upper size limit for the validity of these
approximations depends on @ and # and the
accuracy desired. The limit also depends on
which minimum is being used for the extraction
of information. General trend seems to be -
higher the order of minima, higher is the upper
limit.

(i) It is noted that the approximations should be
looked upon as n — 1 approximations and not

as small impedance mismatch (o —1)
approximations. That is, the mismatch in
density and compressibility should be small
individually.

(iii) MBA has significantly larger domain of validity
in comparison to BA [that is, for the same
maximum per cent error, MBA is generally

valid for larger values of (y,., ¥ ») parameters
as well as larger sizes]. For example, in angular
scattering method for a sphere, the MBA has
less than 5% error in more than 80% of (7,.,

7,) domain for x <35. The corresponding
domain for the BA is only 35% of total (7,

7, ) domain.

(iv) Angular scattering method has larger validity
domain in comparison to the backscattered
power spectrum method. Thus, the angular
scattering method is preferable whenever
situation allows it to be employed. The

difference in the two methods is noted to be
larger for spheres than that for infinitely long
cylinders.

(v) If angular scattering data is to be employed for
size determination the first minimum should be
within 180°. For BA this means that minimum
size of a spherical scatterer that can be
determined is x=2.245. Similarly for an
infinite cylinder this limit is x =1.915. On the
other hand, these lower limits of sizes vary in
MBA depending upon the material properties of
the particles.
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