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Abstract
The validity domain of a modified Born approximation (MBA) has been
examined for the scattering of a pulsed plane wave (PPW). This new
approximation has been compared with exact results and also with the
conventional Born approximation (BA). Comparisons have been made for
the scattering by a homogeneous sphere. Error charts have been presented
for various scatterer sizes and acoustic properties for forward as well as
back scattering. Pulse width has also been varied. Our study shows that
the modified Born approximation is generally preferable to the conventional
Born approximation in the forward direction. In the backward direction
both approximations have almost similar kind of validity domain. These
observations are important in view of the fact that the Born approximation
has been widely used in acoustic scattering problems.

1. Introduction

Ultrasound scattering has found important applications in many disciplines of science,
engineering and medicine. The applications vary from flaw detection and quality control
in industrial processes to underwater scattering in oceans to a variety of medical uses. These
applications require use of either single scattering or multiple scattering theories for the analysis
of measurements. In either case one requires knowledge of the underlying single scattering
phenomenon. Unfortunately, it is not always possible to obtain exact single scattering solutions
and hence it is customary to employ approximation methods. One such approximation that
has been employed extensively is the Born approximation (Morse and Ingard 1968). This
approximation is good for those scatterers whose sizes are small compared to the wavelength
of the incident wave and whose density and compressibility differ only slightly from those of
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the surrounding medium. The approximation leads to formulae that are easy to compute and
which yield reasonably accurate results over the entire angular domain.

In a recent publication (Sharma and Saha 2004), we proposed the use of a modified BA
and examined its validity for the problem of scattering of a plane acoustic wave. This new
approximation is an analogue of an approximation previously used successfully in the context
of light scattering by small particles (Shimizu 1983, Sharma and Somerford 1988). Our studies
in Sharma and Saha (2004) clearly demonstrated that MBA for plane wave acoustic scattering
results in greater accuracy and considerable enlargement of the validity domain as compared
to that of the conventional BA for forward scattering.

One of the limitations of our earlier study was that it was mainly concerned with the
scattering of single frequency plane waves. However, one may be interested in the scattering
of short duration pulses for its wide range of applications. The plane wave study, therefore,
needs to be extended to the scattering of a pulse. In this paper we address ourselves to this
question. Thus, we examine the validity of MBA vis-a-vis validity domain of BA for the
case of a pulsed plane wave. As the accuracy of BA or MBA for a plane wave is frequency
dependent, the validity of these approximations for a pulse may depend on the frequency
content of the pulse in general. The purpose here is to estimate the errors involved in BA and
MBA for typical pulse and scatterer sizes encountered in practical applications where BA is
generally employed.

The second limitation of our earlier study was that it concentrated primarily on examining
the validity of these approximations for forward scattering. Present study is more general
as both forward as well as back scatterings have been examined. The study of validity of
approximations for back scattering is important since most biomedical applications employ
back scattering because of its suitability for in vivo studies (Lzzi and Coleman 1983, Insana
et al 1990, Shung and Thieme 1993). Nevertheless, non backward scattering finds biomedical
applications in studies such as in ultrasonic diffraction tomography (Miyashita and Honda
2000) and red blood corpuscles (RBC) studies (Ishimaru 2002).

The organization of the paper is as follows. In section 2, we give relevant scattering
formulae for exact and for approximate methods for the scattering of a plane wave by a sphere.
In section 3, we obtain corresponding quantities for a pulsed plane wave. Section 4 is devoted
to numerical comparison. Theoretically BA and MBA have the same validity domain. Hence
to delineate their validity domains one has to take resort to numerical comparisons. The model
of scattering by a homogeneous sphere is employed for this purpose because exact solutions
can be easily computed for this shape. Conclusions from this study are presented in section 5.

2. Scattering of a plane wave by a homogeneous sphere

The exact scattering amplitude or the angle distribution factor is given by (Morse and
Ingard 1968)

�ex(k, θ) = i

k

∑
m

(2m + 1)bmPm(cos θ), (1)

where

bm = j ′
m(x)jm(y) − αjm(x)j ′

m(y)

h′
m(x)jm(y) − αhm(x)j ′

m(y)
, (2)

with x = ka, y = nx = nka, n = ke/k = c/ce, α = nρ/ρe and jm and hm are the spherical
Bessel and Hankel functions of order m and the prime denotes differentiation with respect to
the argument. Here a is the size of the scatterer, k and c are the wave number and velocity
of the sound wave in the homogeneous loss-less medium, ke and ce are the corresponding
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quantities of the scattering region. The density and compressibility are designated by ρ and
κ respectively of the surrounding medium whereas ρe and κe are same quantities within the
object. The scattering angle θ is the angle between the direction of observer ks and the
direction of incident wave k. The subscript ex corresponds to the exact solution. For single
frequency plane wave scattering differential scattering cross section (|�(k, θ)|2), which is
the square modulus of scattering amplitude, is always a quantity of interest. The scattering
amplitude �(k, θ) is related to the scattered pressure field p(s)

ex (r, t) in the asymptotic region
r → ∞ via the relation,

p(s)
ex (r, t) = �ex(k, θ)

eik(r−ct)

r
. (3)

The superscript s indicates the scattered wave. Analogous expressions are valid for
approximate pressure fields.

In the Born approximation the scattering amplitude may be expressed as (Morse and
Ingard 1968)

�b(k, θ) = x2

q
[γκ + γρ cos θ ]j1(qa), (4)

where, γκ = κe−κ

κ
and γρ = ρe−ρ

ρe
are the normalized compressibility and density mismatch

parameters respectively and a is the radius of the particle. In equation (4) q = ks − k is the
wave-vector transfer with magnitude 2k sin(θ/2) and j1 is the spherical Bessel function of
order unity. The suffix b stands for the Born approximation. Theoretically, the conditions for
the validity of BA are,

|γκ | � 1 |γρ | � 1, (5a)

x|γκ | � 1 x|γρ | � 1. (5b)

In this approximate method it is assumed that the pressure field inside the scatterer is nothing
but the incident field (eik·r) and hence the wave number within the scattering region remains
same as that of the incident wave propagating through the ambient medium. This assumption
is valid only when the conditions (5a) and (5b) are maintained for the scatterer. The scatterer
is then said to be a weak scatterer.

Many workers (Shimizu 1983, Sharma and Somerford 1988) successfully employed a
modified version of BA to explain the scattering of light by small particles. In this modification
they took the field within the scatterer as eink·r instead of eik·r where nk = ke. This makes
the fields inside the scatterer dependent on the properties of the scatterer. This modification
enlarges the validity domain of BA in acoustical scattering too as shown in detail in Sharma
and Saha (2004). The scattering amplitude in the modified Born approximation is formally
similar to equation (4) and can be written as

�mb(k, θ) = x2

R
[γκ + nγρ cos θ ]j1(Ra), (6)

where R = nks − k and its magnitude is R = k
√

1 + n2 − 2n cos θ . The subscript mb
corresponds to the modified Born approximation. Note that MBA does not introduce any
extra complications in the formula for the angular scattering function. Theoretically, the
conditions for validity of MBA are also given by equation (5).
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3. Formulae for scattering of a pulsed plane wave

Since a pulse can be represented as a linear superposition of plane waves, the asymptotic
scattered pressure field can be expressed as

p(s)(r, t) = 1√
2π

∫ ∞

−∞
g(k)�(k, θ)

eik(r−ct)

r
dk, (7)

where g(k) is the weight factor for spatial frequency k and the form of g(k) depends upon
the shape of the incident pulse. A real pulse emitted by a medical ultrasound transducer can
be approximated as a Gaussian wave packet (Szabo 2004, Tobocman et al 2002, Kharin et al
2003) though in time domain the tailing edge falls slowly comparative to the leading edge.
Thus, for our purpose in this paper we assume that the incident pulse is a normalized Gaussian
wave packet. At time t = 0, the packet is given by

p(in)(z) =
(

1

πσ 2

) 1
4

e− (z+µ)2

2σ2 eik0(z+µ). (8)

This is a Gaussian modulated plane wave of wave number k0 and propagating in the positive
z direction. The spread of this wave packet in space is σ . At time t = 0 the centre of the
wave packet is located at z = −µ or in other words the pulse is launched from z = −µ. The
superscript (in) refers to the incident wave. The Fourier transform of incident pressure field
gives the frequency distribution of the pulse as

g(k) = p̃(in)(k) = 1√
2π

∫ ∞

−∞
p(in)(z) e−ikz dz. (9)

Substitution of equation (8) into equation (9) yields

p̃(in)(k) =
(

1

πσ 2

) 1
4

σ e− (k−k0)2σ2

2 eikµ. (10)

The time evolution of the incident pressure wave packet may be expressed as

p(in)(z, t) = 1√
2π

∫ ∞

−∞
p̃(in)(k) eik(z−ct) dk, (11)

and the associated particle velocity is given by

u(in)(z, t) = 1√
2π

∫ ∞

−∞

p̃(in)(k)

ρc
eik(z−ct) dk, (12)

where ρ is the density of the medium.
The pulse intensity integral (PII) for the incident wave packet at a particular point z

is defined (American Institute of Ultrasound in Medicine 1992) as the time integral of the
instantaneous intensity i.e.,

PII(in)(z) = 1

2

∫ ∞

−∞
p(in)(z, t)u(in)∗(z, t) dt, (13)

where ∗ denotes the complex conjugate of the function. Though the limits of integration in
equation (13) are from −∞ to ∞, actually most energy is contained within a time interval
which is known as pulse duration. In this time interval, the strength of the signal is sufficient
to excite the receiver. Beyond this the signal is less than the lower cut-off of the detector and
indistinguishable from the background noise. Pulse duration is defined as the period between
times when the pulse amplitudes become −20 dB with respect to the maximum amplitude
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Figure 1. (a) PII error contour charts for BA in the forward direction for x = 0.1 and the narrow
bandwidth pulse. White area: <5 per cent error, black area: <10 per cent error, less black area:
<50 per cent error and least black area: >50 per cent error. (b) Same as (a) but for MBA.
(c) Bar diagram for (a). (d) Bar diagram for (b).

(Raum and O’Brien 1997). The explicit form of PII(in) for the incident wave packet can be
obtained by inserting equations (11) and (12) into equation (13). The PII(in) becomes

PII(in)(z) = 1

4π

∫ ∞

−∞
dt

∫ ∞

−∞
p̃(in)(k) eik(z−ct) dk

∫ ∞

−∞

p̃(in)∗(k′)
ρc

e−ik′(z−ct) dk′. (14)

Integrations in the above equation can be carried out to yield

PII(in)(z) = 1

2ρc

∫ ∞

−∞
|p̃(in)(k)|2 dk = 1

2ρc
. (15)

Integrand in equation (15) is the intensity for each plane wave. The scattered pressure field in
the asymptotic region and the corresponding particle velocity in the radial direction are given
by the following relations,

p(s)
ex (r, t) = 1√

2π

∫ ∞

−∞
p̃(in)(k)�ex(k, θ)

eik(r−ct)

r
dk, (16)

and

u(s)
ex (r, t) = 1√

2π

1

ρc

∫ ∞

−∞
p̃(in)(k)�ex(k, θ)

eik(r−ct)

r
dk. (17)
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Figure 2. PII error contour charts for BA in the forward direction for x = 1 and the narrow
bandwidth pulse (a) in the BA, (b) in the MBA. White area: <5 per cent error, black area: <10
per cent error, less black area: <50 per cent error and least black area: >50 per cent error.

We can also derive analogous expressions for the approximations. In general �(k, θ) is a
complex quantity and hence p(s)

ex (r, t) retains the information of phase change that has been
taken place during the interaction of the plane waves with the scatterer. In the asymptotic
region, the phase difference between the pressure and the particle velocity can be neglected
and the radial component of the pulse intensity integral at a particular radial point (r) for the
scattered pressure is given by

PII(s)ex (r) = PII(in)

r2

∫ ∞

−∞
|p̃(in)(k)�ex(k, θ)|2 dk. (18)

The integrand in equation (18) gives the differential scattering cross section for a plane whose
wave number is k. Similar relations hold for approximations too. Note that PII(s)(r) does not
contain any phase information.

For scanned modes (A mode, B mode) pressure field distribution or more precisely
maximum positive peak pressure (PPmax) is a quantity of interest whereas for unscanned
modes (pulsed Doppler mode, M mode) PII is one of the quantities of interest. To compare
approximation methods we follow both the methodologies (PPmax and PII).
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Figure 3. (a) PPmax error contour charts for BA in the forward direction for x = 0.1 and the
narrow bandwidth pulse. White area: <5 per cent error, black area: <10 per cent error, less black
area: <50 per cent error and least black area: >50 per cent error. (b) Same as (a) but for MBA.
(c) Bar diagram for (a). (d) Bar diagram for (b).

4. Numerical comparison

This section gives results of a quantitative study of validity of BA and MBA. The ambient
medium is chosen as a biomedical tissue-like medium. The acoustic parameters, like density
and compressibility of the scattering region, are varied within ±15% with respect to those
parameters of the surrounding homogeneous medium. Hence the scatterer can be treated
as a weak scatterer and the approximation methods (BA and MBA) may be expected to
work faithfully for the description of single particle scattering phenomenon. This variation
corresponds to typical variations in medical problems. For example γρ and γκ for a red
blood cell in plasma are 0.0695 and 0.166 respectively (Ishimaru 2002). For a plane wave of
frequency 5 MHz, the wavelength is 308 µm for a typical tissue-like medium with velocity of
1540 m s−1. If the equivalent sphere size of the RBC is taken to be 5.5 µm, the x value can be
calculated to be x = 0.056. For larger scatterers such as muscle tissues, cells can be as large as
40 µm giving an x = 0.41. The values for x can be quite large for scatterers such as tumours
(Hinders et al 1992). Thus, we have chosen to examine the validity of approximations for
scatterers in the size range x = 0.01 to x = 5.0 with respect to the central frequency of the
pulse. Two different incident pulses have been taken for numerical calculations. Bandwidth
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Figure 4. PPmax error contour charts for BA in the forward direction for x = 1 and the narrow
bandwidth pulse (a) in the BA, (b) in the MBA. White area: <5 per cent error, black area: <10
per cent error, less black area: <50 per cent error and least black area: >50 per cent error.

(−6 dB) of the first pulse is 1.48 MHz and its duration is ≈547 ns. The bandwidth (BW) of
the second pulse is 7.91 MHz with ≈69 ns pulse duration. While the bandwidth of the first
pulse is close to a typical pulse launched by the clinical transducers, the second pulse has been
employed to study the bandwidth dependence of the approximations. 5 MHz is the centre
frequency for both of them. This typical value of centre frequency is taken on the basis that
most of the diagnostic ultrasound instruments operate within the frequency range 2–10 MHz.

To compare the errors in BA and MBA we define per cent errors in PII as,

PII per cent error =
∣∣PII(s)ex − PII(s)approx

∣∣
PII(s)ex

× 100, (19)

where PII(s)ex and PII(s)approx are the pulse intensity integrals of the scattered pulse in the exact
method and in the approximate method respectively. Similarly we define PPmax per cent errors
for an approximation method as

PPmax per cent error =
∣∣max

[
p(s)

ex

] − max
[
p(s)

approx

]∣∣
max

[
p

(s)
ex

] × 100, (20)

where max
[
p(s)

ex

]
is the maximum value of positive peak pressure of scattered pressure pulse.
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Figure 5. (a) PII error contour charts for BA in the backward direction for x = 0.1 and the
narrow bandwidth pulse. White area: <5 per cent error, black area: <10 per cent error, less black
area: <50 per cent error and least black area: >50 per cent error. (b) Same as (a) but for MBA.
(c) Bar diagram for (a). (d) Bar diagram for (b).

Table 1. PII error.

Fractional area covered by the error

Error <5% Error <10%

Narrow BW Wide BW Narrow BW Wide BW

Direction Size BA MBA BA MBA BA MBA BA MBA

Forward 0.1 0.52 0.49 0.52 0.49 0.73 0.79 0.72 0.79
1.0 0.15 0.63 0.19 0.50 0.48 0.75 0.42 0.82
5.0 0.15 0.31 0.19 0.27 0.30 0.57 0.37 0.52

Backward 0.1 0.53 0.60 0.53 0.61 0.74 0.71 0.74 0.71
1.0 0.43 0.49 0.56 0.43 0.74 0.62 0.82 0.60

Figures 1 and 2 show typical comparison of errors in PII for BA and MBA for x = 0.1
and for x = 1.0 respectively for forward scattering for the narrow bandwidth pulse. The
numerical values of areas covered by the regions with errors less than 5% and 10% are shown
in table 1 for x = 0.1, 1.0 and 5.0. It can be seen from table 1 that while BA and MBA have
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Figure 6. (a) PII error contour charts for BA in the backward direction for x = 1 and the narrow
bandwidth pulse. White area: <5 per cent error, black area: <10 per cent error, less black area:
<50 per cent error and least black area: >50 per cent error. (b) same as (a) but for MBA. (c) Bar
diagram for (a). (d) Bar diagram for (b).

Table 2. PPmax error.

Fractional area covered by the error

Error <5% Error <10%

Narrow BW Wide BW Narrow BW Wide BW

Direction Size BA MBA BA MBA BA MBA BA MBA

Forward 0.1 0.73 0.78 0.73 0.78 0.84 0.85 0.84 0.84
1.0 0.49 0.75 0.47 0.88 0.82 0.84 0.91 0.97
5.0 0.30 0.58 0.36 0.53 0.66 0.96 0.65 0.92

Backward 0.1 0.74 0.71 0.74 0.71 0.85 0.77 0.84 0.77
1.0 0.74 0.61 0.77 0.66 0.92 0.73 0.90 0.77

similar validity domain for small size scatterers, MBA distinctly has a larger validity domain
in comparison to BA for large scatters. One can observe the same trend for a wide band pulse
too. Results for typical comparison of errors in PPmax for BA and MBA for x = 0.1 and
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Figure 7. (a) PPmax error contour charts for BA in the backward direction for x = 0.1 and the
narrow bandwidth pulse. White area: <5 per cent error, black area: <10 per cent error, less black
area: <50 per cent error and least black area: >50 per cent error. (b) Same as (a) but for MBA.
(c) Bar diagram for (a). (d) Bar diagram for (b).

for x = 1.0 respectively for forward scattering for the narrow bandwidth pulse are shown in
figures 3 and 4. The numerical values of regions with errors less than 5% and 10% are shown
in table 2 for x = 0.1, 1.0 and 5.0. Results are similar to those obtained for PII. The same
holds for wide band pulse too. Clearly, MBA is almost always preferable to BA for forward
scattering.

Figures 5 and 6 show per cent errors in BA and MBA for x = 0.1 and x = 1.0
respectively for PII for the back scattering of narrow bandwidth pulse. The numerical values
of areas for regions with errors less than 5% and 10% are shown in table 1 for x = 0.1 and 1.0.
Corresponding values for a wide band pulse are also shown in the same table. It is interesting
to note that although, BA generally appears preferable to MBA, there are regions where the
use of MBA is clearly advantageous. For example, a glance at table 1 shows that for x = 0.1
(narrow as well as wide band case for error <5%) MBA has a wider domain of validity in
comparison to BA. Since there are no extra complications in the use of MBA, the use of MBA
is preferable for such particles even for back scattering analysis. Clearly, the accuracy of BA
and MBA should be compared for the region of interest before either approximation is used
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Figure 8. (a) PPmax error contour charts for BA in the backward direction for x = 1 and the
narrow bandwidth pulse. White area: <5 per cent error, black area: <10 per cent error, less black
area: <50 per cent error and least black area: >50 per cent error. (b) same as (a) but for MBA. (c)
Bar diagram for (a). (d) Bar diagram for (b).

for the back scattering. In contrast for PPmax however, BA appears to be always preferable for
back scattering. This can be seen from figures 7 and 8 and table 2.

A look at tables 1 and 2 also reveals that the change of bandwidth does not result in
significant changes in the validity domains of the approximations. Less than 15% change in
the area with respect to the total area has been observed here. Another interesting feature of the
approximations that can be noted from figures 1–8 is that while the approximations are good
for forward scattering in the limit α → 1, for back scattering the approximations should be
looked upon as n → 1 approximation. That is for forward scattering the approximations are
good when the relative acoustic impedance goes to 1. On the other hand, the approximations
are good for back scattering if the relative velocity between the scatterer and the surrounding
medium approaches to 1.

5. Conclusion

In this paper we have drawn attention of workers in the field of ultrasound to an approximation
that takes into account a simple modification in the Born approximation. We have evaluated
the validity of BA as well as MBA for the scattering of pulsed plane wave by a homogeneous
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sphere. It has been shown that MBA can be extremely useful for predicting the ultrasound
scattering by weak scatterers.

The approximations have been examined for the domain of x values ranging from 0.01 to
5.0. The mismatch of the density and compressibility between the scatterer and the surrounding
medium has been taken to be up to 15%. In this regime n and α values also vary within 15%.
These mismatches are typical for problems encountered in medical systems. For example,
(i) acoustic properties of tissues in brain, kidney, liver and various types of muscle differ by
less than 15% from those of water (Christensen 1988), (ii) Hinders et al (1992) have taken
10% variation in density and wave speed with respect to surrounding tissue for calculations of
scattering by a spherical tumour. Representative results of our study have been presented as
error contour charts and error bar charts for forward as well as back scattering. Corresponding
numerical values of errors are displayed in the tables. The quantities for which the errors
are compared are the pulse intensity integral and the maximum positive peak of the scattered
pressure pulse. Typical narrow band and a wide band pulses have been considered.

Following conclusions may be drawn from this study of the validity of BA and MBA for
scattering of a pulse by a weak scatterer. (i) For forward scattering, MBA is always preferable
in comparison to BA (for PII as well as PPmax). (ii) For back scattering, BA is always preferable
in comparison to MBA for PPmax only. For PII, although BA seems to be generally preferable,
there are regions where MBA clearly has an advantage. For example, for small particles, there
are regions, MBA distinctly has a wider domain of applicability in comparison to BA even
for back scattering. Thus when back scattering is used in conjunction with PII, it would be
desirable to compare the two approximations in the region of interest and employ one which
is more accurate for those set of parameters. (iii) Change of bandwidth does not result in
significant change in the validity domains of the approximations. (iv) For forward scattering
both approximations should be looked upon as α → 1 approximation. On the other hand, for
back scattering the approximations should be thought as n → 1 approximation.
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