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The density and compressibility fluctuations in a .tissue medium act as scattering centres for an
incoming ultrasound wave and accordingly the scattered wave carries a significant amount of information
about the tissue medium. Thus, in principle, it is possible to characterize the tissue medium by analyzing
the scattered component of the wave-in particular the backscattered component. In the method developed
so far to achieve this end, the Born approximation is almost exclusively employed to describe the acoustic
scattering process. In this paper, we propose two improved forms of the Born approximation which may
be used in place of the conventional Born approximation. The validity domain of these approximations has
been studied in case of exactly soluble models. The potential of this approach for solving tissue scattering

problems is being examined.

INTRODUCTION

The interaction between a biomedical tissue
and ultrasound sound involves complicated
process and requires sophisticated models for its
description. In addition to reflection and refraction
at the tissue boundaries, the scattering by tissue
inhomogeneities also play an important role.
Conventional ultrasound imaging systems produce
a gray scale image by converting the intensity of
the echo signal into gray valuel. This echo signal
also contains the scattered signals from the
inhomogeneities. For imaging purpose, this part of
the signal is generally regarded as unwanted noise.
However, the analysis of the scattered signal has
been shown to be very useful for the purpose of

tissue characterization. By analysing the back:

scattered signal, many workers estimated tissue
characteristics such as the size of the scatterers,
their number density and scattering strength?.

In these models the tissue is treated as an
inhomogeneous medium consisting of scattering
centres of sizes small in comparison to the
wavelength of the incident ultrasound wave. The
scatterers are assumed to be randomly distributed.
The scattering from a single scatterer in these
models is assumed to be described in the
framework of the Born approximation.

Recently, Tobocman et al have proposed a one
dimensional scattering model for characterization
of layered tissue by profiling its acoustic
impedance. The layered tissue model has been
applied to biomedical tissues such as the colon of
pig. This approach is also based on the Born
approximation. Clearly the accuracy of the
approach is dependent on the accuracy of the Born
approximation.

It is surprising that although the Born
approximation is employed so widely in tissue



scattering problems, it appears that no attempt has
been made to study the accuracy of the Born
approximation quantitatively for parameters of
scatterers pertinent to biomedical tissues. Nor has
there been any attempt to obtain improved
approximations. Our aim in this paper is two fold,
(i) We examine the validity of the Born
approximation in three dimensional as well as one
dimensional back scattering and, (ii) We design
new approximation methods and compare their
accuracy with the Born approximation. For these
purposes, we consider (i) the exactly soluble case of
scattering of ultrasound by a homogeneous sphere
in three dimensions and (ii) the one dimensional
exactly soluble model for the layered tissue.

The organization of this paper is as follows.
In section 2, we consider three dimensional back
scattering from a solid sphere and give relevant
exact and approximate formulae. Section 3 is
devoted to exact and approximate formulae for
scattering by an one dimensional homogeneous
layer. In section 4, we present numerical
comparisons of approximated formulae with exact
results for both three dimensional as well as one
dimensional models. Finally, we conclude by
summarizing results in section 5.

SCATTERING FORMULAE IN THREE

DIMENSIONS

In a homogeneous loss-less medium, waves
can propagate indefinitely. However, due to the
fluctuations of density and compressibility, the real
tissue medium is inhomogeneous. The exact
scattering solution of scattering amplitude for a
single scatterer can be found by solving the wave
equation both inside and outside of the
inhomogeneity and then matching them at the
boundary. The exact solution exists for very few
simple shapes of scatterers. The scattering
amplitude or the angle (8) distribution factor can
be exactly calculated? for the case of a
homogeneous spherical scatterer partial wave
analysis in terms of Legendre polynomials P ,(cos0)
and is given by,

@,.(0)= iz(zm 1)b,,P, (cos6) (1)
where :
o jf'”(x)jm (y)ia]‘m (x)j!m (y) (2)
= hjm (x)jm(y)-ahm (x)jf”" (y)
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with x = ka, y = nx, n = k,/k = ¢/c,, « = np/pe and
jm and h, are the spherical Bessel and Hankel
functions of order m and the prime denotes
differentiation with respect to the argument. Here
o is the size of the scatterer, k and c are the wave
number and velocity of the sound wave in the
homogeneous loss-less medium, the k, and c, are
the corresponding quantities of the medium inside
the scatterer. The density and compressibility are
designated by p and k respectively of the
surrounding medium where as p, and k, are same
quantities within the object. Here the scattering
angle i.e. the angle between the direction of
observer kg and the direction of incident wave k is
0. The subscript ex corresponds to the exact
solution. If we restrict ourselves to the first two
terms of the expansion (1), we get,

2Ll -k 3p,-3p
@1(9)—512{ 7 +2pl,+p cos@ (3)

which is known as the long wavelength
approximation (indicated by the subscript I). This
approximation is valid for scatterers small in
comparison to the wave length of ultrasound. For
more complicated particle shapes, we rely on the
Green’s function approach. In this approach, the
wave equation is written in such a way that it
accommodates the homogeneous equation as well
as an extra term which takes care of the mismatch
in density and compressibility and their spatial
variation?,

2

10 10 .
V= f:C_zgf.yk(r)+dw[}/p(r)gmdp:l (4)

-l 7p(f)‘pE;§:()r—)p ©)

inside the scattering region and yy = 0, y, = 0
outside the scattering region. If the incident wave
is a single frequency wave and the interaction
remains time invariant then we may write
p = p, exp (-iot). The equation for the pressure
amplitude then becomes,

Vip, +k’p, :fk"yk(r)+div[yp(r)gmdpw] (6)

After rearranging some terms the equation (6) may
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be written as,

2 b -1
Vipm +nik2pa) :[Iﬁyp (r)] V}/p (r)'vpm (7)
where

_Itn(n _K@__ ¢
1y, () K () (®)

' (r)

with k=w/c and k, = o/c,, o is the angular
frequency of the acoustic wave. The angle
distribution factor or the scattering amplitude is
then expressed as?,

'S .
@s (9) = EJ‘[?,‘ (Tﬂ)pfo (TG)_I}’p (rﬂ)Ekr—'vap?n(Tﬂ):'
exp(—iks.ry)dr,, 9)

where a, = k/k is the unit vector along the
direction of observer and rj is a point within the
obstacle. Since we are considering only the elastic
scattering, then |k |=|k|.

It is clear from the equation (9) that the
knowledge of pressure field inside the
inhomogeneity is sufficient to calculate the
scattering amplitude. It it is assumed that,

k—k, =P,
| P |<<I,'| ]<<I (10)

Pe

ek _,. xe-nl 4
k o,

(11)

the pressure wave inside the scatterer may be
approximated as,

Po (rﬂ) = exp(—ik.ro) (12)

This is the well known Born approximation.
Then by substituting (12) into (9), we get the
scattering amplitude as follows,

2,(6) =2 [[1.(0) +7, () cos8 Jexp (i) dry (13)

‘The subscript b stands for the Born
approximation. The momentum transfer kg - k is
designated by q. Its magnitude is 2k sin (8/2). For
a homogeneous spherical scatterer the integration
can be done analytically to yield,
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where a is the radius of the sphere and j;(qa) is the
spherical Bessel function of order unity.

Saxon, in the context of light scattering by a
dielectric sphere, modified the Born approximation
by introducing a multiplicative factor k,/k with the
wave number k of the incident wave. Essentially
the pressure wave within the scatterer becomes,
Pau(rg) = exp (-ink.rg). In this way, the property of
the medium can be incorporated into the incident
wave. For forward scattering, this approximation
enlarges the validity domain of the Born
approximation®. The scattering amplitude in this
approximation is,

@, (0)= % I[}"‘ (r)+ ny, () cos B:lexp(fiR.rO)dro
(15)

where and its

R=nk.-k
R:k\/1+n2_2nm59,the subscript mb refers to

modified Born approximation. For the case of a

magnitude is

homogeneous spherical scatterer of radius a, the
integration leads to,

2
D, (ks)z%[ykwLnypcost?]j](Ra) (16)

Further, if we choose n as 3p,/(2p,+p), the
expression for the scattering amplitude becomes,

k. -k 3p.-3 .
@h(ks):x P T W J,(Ra) (17)

R| k (2p.+p)

For a — 0, equation (17) reduces to the long
wavelength approximation (3) because j;(Ra)=Ra/3.
As we shall see in numerical comparisons, this
approximation results in significant improvement
over the Born approximation while keeping the
basic simplicity of the Born approximation. We call
it a hybrid approximation because it may be looked
upon as combination of Born and long wavelength
approximation. The subscript h denotes the hybrid
approximation.
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BACK SCATTERING IN ONE DIMENSION

Consider now an essentially one dimensional
problem of the scattering of a plane wave by a
homogeneous layer (characterized by density p,
and compressibility k,) of width 2L (placed parallel
to the wave-front). The exact reflection coefficient
is given by,

R (k)= (a2 - 1)2 sin® 2k L
T N da? (a2 - 1)2 sin® 2k,L ()

The surrounding medium is taken to be a
homogeneous loss-less medium of density p and
compressibility k. This expression is obtained by
solving the wave equation both inside and outside
the layer and then matching the solutions at the
boundary®. The subscript ex stands for exact
solution.

The wave equation inside the scatterer takes
the form?,

g(i@};@

Peax\pox ) 2 of? (1)
The time independent form of this equation
is,
o 1op 2
e | T A =-k
p(. ax(pe ax) Ep (20)

Introducing the concept of elapsed time, dt,
defined as

dx ndx
dt=—=—-, (21)
c c

£

and employing the relationships,

ds =cdt =ndx, (22)
2 it 23
dx ds’ ()

Tobocman® showed that the equation (20)
can be written as,

ip ( d Jdp
Ll A T LT W .
ds* TEP ds e ds (&4)

The term occurring in the right hand side of
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equation (24) can be recognized as the source term.
The reflection .coefficient with this identification
can be written as®,

R (k)= ﬁ ffxp(kaa)Hdi IMJEES{;}P(%W% (25)

Employing the Born approximation,

p(sy) = exp(iks,) (26)

Tobocman et al® show that the reflection
coefficient can be expressed,

R, (k)=(In a)sin(2kL), (27)

where the subscript t refers to Tobocman
approximation. In deriving (27), Tobocman et al®
assume that the thickness of layer is 2L even in the
s-space. This assumption appears to be inconsistent.
Equation (22) tells us that with respect to this new
variable space, the width of the layers becomes
2nL. This modification gives,

R, (k)=(In a)sin(2k,L), (28)

where the subscript mt corresponds to modified
Tbobocman approximation. As we shall see in next
section, this modification results in a significant
improvement of the result and that the Tobocman
and modified Tobocman lead to similar results
only for n close to unity.

NUMERICAL COMPARISON

In this section, we test how good are the
other approximation methods in comparison to the
Born approximation. In three dimensions, the
testing is done for scattering by a homogeneous
sphere and in one dimension, the testing is done
for a homogeneous layer. It is possible to compute
the exact solution for both cases. In either case, the
surrounding medium is taken to be a homogeneous
and loss-less medium. We choose the surrounding
medium as a tissue like medium with acoustical
properties, p = 1050 kgm™ and ¢ = 1540 ms™! and
these give, k =4.01577 x1010 kglm?s. The frequency
of the ultrasound for medical diagnostics is
generally taken from 2 MHz to 10 MHz. We take 2
MHz as the frequency of the incident ultrasound
for our numerical calculations for which the wave
number of the incident wave becomes k = 815.99809
m'l. The acoustic parameters of the scatterer have
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P k
been taken with the ratios ;andf from 0.85 to

1.15. This is equivalent to, being in the regime n =
0.85 to 1.15 and a =~0.85 to 1.16 on n and o close
to 1.

We calculate the exact backward scattering
amplitude using equation (1), and equations (3),
(14), (16) and (17) yield the corresponding result
using various approximation methods. We define,

(2] -

€2 approx

2
)x100

error (%) = r =

ex

Figures 1, 2 and 3 show the error contour
charts of various approximations having the size
parameters x = 0.01, x = 0.1 and x = 1.0,
respectively, for the case of scattering by a
homogeneous sphere. It is clear from the Figures 1
and 2 that the hybrid approximation is far superior
to the Born approximation and the modified Born
approximation. As expected, in this region, its
predictions are close to the predictions of the long
wavelength approximation. For particle with sizes
close to x = 1, the hybrid approximation is far
superior to the long wavelength approximation and
is as good as the Born approximation. Hence the
use of hybrid approximation is preferable to the
Born approximation in the domain x < 1 and n-1
<< 1. However, the Born approximation is noted to
have an edge over the hybrid approximation when
n is not close to unity.

For one dimensional case we compute
equation (18) to find the exact value of reflection

K /K
B

Fig. 1(a). Error contour chart for x=0.01 - in long
wavelength approximation
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Fig. 1(b). Error contour chart for x=0.01 for the Born
approximation
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Fig. 1(c). Error contour chart for x=0.01 for the
modified Born approximation

Fig. 1(d). Error contour chart for x=0.01 for the hybrid
approximation
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Fig. 2(a). Error contour chart for x = 0.1 - in long
wavelength approximation

Fig. 2(b). Error contour chart for x=0.1 for the Born
approximation
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Fig. 2(c). Error contour chart for x=0.1 for the modified
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Fig. 2(d). Error contour chart for x=0.1 for
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Fig. 3(a). Error contour chart for x =1 - in long

wavelength approximation
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Fig. 3(b). Error contour chart for x = 1 for the

Born approximation
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Fig. 3(c). Error contour chart for x =1 for the

modified Born approximation
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Fig. 3(d). Error contour chart for x = 1 for the
hybrid approximation

coefficient of the layered tissue. The approximation
results from equations (27) and (28) are compared
with the exact results. Percentage error is defined
as,

(|R¢:'x|2 - |Rnppmx Z)X 100

error (%)= |R |2

The error contour charts for the two
approximations are shown in figures 4, 5 and 6
respectively, for x = 1, x = 10 and x = 20. Figures
clearly show that the modified Tobocaman
approximation gives very good results and
constitutes a significant improvement over the
Tobocman approximation. Note that the
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Fig. 4(a). Error contour chart for x =1 -in
Tobocman’s approximation
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Fig. 4(b). Error contour chart for x =1 for the
modified Tobocman approximation
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Fig. 5(a). Error contour chart for x=10 -
in Tobocman’s approximation
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Fig. 5(b). Error contour chart for x=10 for the
modified Tobocman approximation
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Fig. 6(a). Error contour chart for x = 20 - in
Tobocman’s approximation
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Fig. 6(b). Error contour chart for x = 20 for the
modified Tobocman approximation
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approximation is good for significantly thick layers
too.

CONCLUSION

The aim of the paper was to study
quantitatively the accuracy of various
approximation methods for the back scattered
intensity in three dimensions as well as in one
dimension. In three dimensions, we saw that for
small values of x the hybrid approximation gives
significant improvement over the Born
approximation. Hence the hybrid approximation is
preferable to the Born approximation for x <1 and
n-1 << 1. However, for large n values, the Born
approximation seems to be the preferable
approximation. For values of x close to unity, the
hybrid approximation is as good as the Born
approximation for n close to unity. For larger
values of n, the Born approximation appears to be
more suitable for particles of sizes that are of the
order of the wavelength of the incident wave.

In case of layered media, the modified
Tobocman approximation suggested by us leads to
extremely good results. As expected for n—1, the
Tobocman approximation and the modified
Tobocman approximation are equally good
approximations. The modified Tobocman
approximation significantly improves the
approximation and surprisingly valid for thickness
values well beyond suggested by the theory. Our
results show that this approximation should be
useful for profiling impedance of thick layers of
tissue.

In three dimensions, we calculate the
expression of scattering amplitude for different
approximations by assuming each point within the
scatterer as a source and integrating over the
whole inhomogeneity. The physical dimension of
the scatterer remains unchanged. Only the pressure
tield within the scatterer is either taken as the
incident pressure field or modified by the acoustic
properties of the medium. However, in one
dimension as Tobocman et al have introduced the
concept of the acoustical path, the effect of this is to
change the effective physical dimension of the
scatterer and the pressure field is assumed as the
incident pressure field in the Born approximation.
So, our approaches are different in dealing the
problems in three dimensions and in one
dimension. The understanding of these two spaces
bring us to a new direction of study to apply the
elapsed time methodology to scattering in three
dimensions.
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