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LETTERS TO THE EDITOR

Comments on ‘Free of speckle ultrasonic imaging of
soft tissue with account of second harmonic signal’

Received 23 April 2004

The Editor,
Sir,
In a recent paper in this journal, Kharin et al (2003) have employed a one-dimensional acoustic
backscattering method developed by Tobocman et al (2002) using Born approximation
deconvolved inverse scattering (BADIS), to obtain the impedance profile of a small layered
soft tissue structure. Our purpose in this letter is to make a few observations regarding the
validity domain of the BADIS method and a simple modification which results in its extension
to a wider range of applicability.

We begin by recalling briefly the BADIS formalism (Kharin et al 2003, Tobocman et al

2002). The starting point is the steady state acoustic wave equation for the excess pressure p′:

ρ
∂

∂x

1

ρ

∂p′

∂x
= −ω2

c2
p′ = −k2p′, (1)

where c = 1/
√

ρκ is the speed of sound and ρ and κ respectively are the density and
compressibility of sound in the scattering region. The wave number k is related to the incident
wavelength λ, by the relation k = 2π/λ. Introducing the elapsed time dt such that cdt = dx,
they write

dt = dx

c
= ndx

c0
, (2)

where c0 = 1/
√

ρ0κ0 is the speed of sound in water (surrounding medium) and n = c0/c is
the index of refraction. Next a distance ds is defined such that

ds = cdt = ndx. (3)

The acoustic wave equation can then be expressed as

d2p′

ds2
+ k2p′ =

( d

ds
ln z(s)

)dp′

ds
, (4)

where z(s) = Z(s)/Z0, Z(s) being the acoustic impedance of the layer and Z0 that of the
surrounding medium. Equation (4) is a one-dimensional Schrödinger equation and its solution
for the scattering by a layer of thickness −L to L has been previously expressed as

R(k) = 1

2ik

∫ L

−L

exp(iks)
[( d

ds
ln z(s)

) d

ds

]
pk(s)ds, (5)

where R(k) is related to the impulse response gIR via the relation

gIR(s) = 1

2π

∫
dkR∗(k)eiks . (6)
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Figure 1. (a) Percent errors in |RB(k)|2 have been compared for various κ/κ0 and ρ/ρ0. The
thickness of the layer is such that ξ = 1.0. The white region corresponds to errors less than 1
percent. Black: less than 5 percent; less dark shade: less than 10 percent; and the least dark shade:
less than 50 percent. (b) Same as (a) but for |RMB(k)|2. White region: errors less than 0.5 percent;
dark region: errors between 0.5 and 1.0 percent.

This is the reflected pulse when the incident pulse is a Dirac delta function and R∗(k) is the
complex conjugate of R(k). If the scattering is weak so that pk(s) ≈ eiks in the interaction
region, then the reflection amplitude in the Born approximation is

RB(k) = 1

2

∫ L

−L

dse2iks d

ds
ln z(s). (7)

Substituting R∗
B(k) for R∗(k) in (6) the final result is

z(s) = exp[4
∫ s

0
dygIR(y)]. (8)

The result (8), along with (6), is the basic imaging result of BADIS.
An interesting point in the derivation of (8) is as follows. In writing (5) it was assumed that

the thickness of layer, which is 2L in x-space, remains the same in s-space too. But according
to (3), the width of layer in s-space should ranslate to −nL < s < nL. Thus the limits of the
integration in (5) should be from −nL to nL. Equation (7), therefore, should be modified to

RMB(k) = 1

2

∫ nL

−nL

dse2iks d

ds
ln z(s). (9)

The subscript MB refers to the modified Born reflection amplitude. The important thing to
note is that the use of this reflection amplitude in (6) also leads to (8).

It is clear from the above discussion that whereas the derivation in Kharin et al (2003)
and Tobocman et al (2002) suggests that the validity of (8) is limited by (7), the modification
described here suggests that the validity of (8) is determined by (9). In view of this, it is
instructive to examine the validity of approximations (7) and (9) in the case of an exactly soluble
model. For this purpose we compare the approximations numerically for the exactly soluble
case of a one-dimensional homogeneous layer. We define percent error in the approximations
as

percent error = (|Rex |2 − |Rapprox |2) × 100

|Rex |2 . (10)
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Figure 2. (a) Percent errors in |RB(k)|2 have been compared for various κ/κ0 and ρ/ρ0. The
thickness of the layer is such that ξ = 20.0. The white region corresponds to errors less than 1
percent. Black: less than 5 percent; less dark shade: less than 10 percent; and the least dark shade:
less than 50 percent. (b) Same as (a) but for |RMB(k)|2. White region: errors less than 0.5 percent;
dark region: errors between 0.5 and 1.0 percent.

The exact reflection amplitude, Rex , for a homogeneous layer of width 2L characterized by
density ρ and compressibility κ is given by (Kinsler et al 2000),

Rex(k) =
√

(z2 − 1)2sin22nkL

4z2 + (z2 − 1)2sin22nkL
. (11)

The error contour charts of the two approximations are shown in figures 1 and 2 respectively
for ξ = 1 and ξ = 20. The size parameter ξ = 2πL/λ can be looked upon as a measure of
the size of the particle in terms of the wavelength. The scatterer is weak in the sense that ρ/ρ0

and κ/κ0 are close to 1, which is indeed the case for majority of tissues. The figures clearly
show that the errors in |RB |2 can be quite large for certain values of ρe/ρ, κe/κ even for weak
scatterers with thin layers. In comparison the errors in |RMB |2 are negligibly small even for
comparatively thick layers.
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